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Abstract— This paper presents a method based on inverse
kinematics with task specification for online human to hu-
manoid motion imitation. We particularly focus on the problem
of lifting and placing feet on the floor during the motion,
allowing change of support during stepping or locomotion. The
approach avoids the use of motion primitives that limit the
robot motions to what had been learned. A direct transposition
of movements is generated, allowing the robot to move freely
in space as the human model does, at a velocity close to the
reference one. The approach is validated on the humanoid robot
NAO and shows very promising results for the use of online
motion imitation.

I. INTRODUCTION

Humanoid robots are made to the image of human beings.

Mechanically, their bodies try to emulate the human body

in several aspects: whole-body robots possess two arms,

two legs and a head. If humanoid robots are to interact

with human beings, it is imperative that their gestures are

human-like since much of human communication is non-

verbal. However, programming each aspect of the motion

detail by detail in order to make it human-like is time-

consuming and not fit to handle the immense variety and

complexity of human behaviors. A natural alternative is to

look for inspiration in human movements to generate motion

for the humanoid.

Motion imitation does not come without its challenges.

Even the most elaborate humanoid robots have less degrees

of freedom (NAO: 25, Asimo: 34, HRP-4C: 42) than the

human body. This considerably limits the redundancy of

the robot in relation to the human body. There are also

differences in the link lengths, joint ranges, velocities, ac-

celerations and torques, which must be properly mapped to

the considered robot morphology during imitation. Moreover,

issues such as self-collision and singularities must be ad-

dressed.

Riley et al. [1] scaled the captured motion in joint space

in order to fit the joint ranges of the robot. The scaling

was performed globally, which did not preserve nuances

of the movement. This was addressed by Pollard et al.

[3], who locally scaled angles and velocities in order to

preserve as much as possible local variations in the motion
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imitated by the Sarcos robot. Safonova et al. [4] addressed

the issue of the robot overall configuration by inserting a term

in the optimization which maintains the relative positions

between certain key points on the body. In the previously

mentioned works, the robot did not have to stand its own

weight or remain balanced. Moreover, these were validated

offline, allowing forward-backward loops considering the

whole motion performed, or optimization processes.

Real-time or online imitation is necessary for interactive

applications or teleoperation. In such case, time becomes a

rigid constraint to be met to maintain as much as possible

the artificial motion performance at the same speed rate

than the model motion. Riley et al. [5] divided the inverse

kinematics computation into 6 hierarchical chains to speed

up computation. They were able to perform whole body real-

time imitation, but once again balance was not considered.

Montecillo et al. [6] sped up the retargeting process by

developing a “Humanoid normalized model” which can be

retargeted online for marker-based motion capture systems.

Koenemann et al. [7] proposed an online imitation by in-

terpolating trajectories between captured human poses using

inverse kinematics (IK). This resulted in a fluid motion but

not retaining the nuances of the human reference motion

and introducing a visible delay. On the other end, inverse

kinematics was proposed by Sakka et al. [2] showing an

almost non existent delay between the human motion and

the humanoid one, but with a less fluid motion.

Kinematics retargeting is enough to perform imitation

in slow velocities (quasi-static). When moving with higher

accelerations however, inertial forces come into play and the

system dynamics must be considered. As the robot body

masses and achievable accelerations are different from those

of the human, some dynamics retargeting must be made.

A common approach to keep balance is using a different

controller for upper and lower body [8]. Other works have

used human motion in order to design realistic trajectories for

the zero-moment-point (ZMP) during imitation [9]. Nakaoka

et al. [10] pointed out that due to limitations such as the

lack of toes and the impossibility of crossing the legs, many

humanoid robots can’t properly imitate human motion. Thus,

they use motion primitives for the legs and inverse kinematics

for the arms. This allows for easier computation of balance

using ZMP since the legs can only assume three different

patterns, but over-simplifies the motion being imitated.

When changing support feet, there is a sudden change in

the support area and it is necessary to ensure the projection

of the CoM or the ZMP are within the new support polygon

before effectively landing or taking off a foot. It is also



important to make sure the foot interacts with the floor while

flat. Montecillo et al. [6] anticipated a change of support

of the feet to maintain balance during support transition by

controlling the robot head and CoM displacement in one

axis.

This paper will introduce a strategy which allows a change

of support while maintaining the nuances of the human

motion during online imitation. This is possible due to the

solution of IK with task specification [2], which uses the

robot redundancy to place its feet at different poses at each

support change, as the human does. In the next section, the

general method to scale the human motion to any humanoid

robot dimensions will be introduced, and the method of

task specification will be described. Next, the scaling and

IK goals will be extended to different support phases and

the transitions among them. Finally, the method will be

validated with the NAO robot and several human actors,

whose respective motions are tracked by a simple markerless

motion capture system (Kinect).

II. METHOD

A. Scaling human motion

Imitation contains two main actions: reproduce the task

and reproduce the manner the task is performed. The task in

our case is to track the reference end effectors trajectories

(the human hand and feet displacements). To do so by any

humanoid robot, a geometric scaling must be performed

beforehand so the human dimensions match the humanoid

ones.

In this work, each human segment is scaled to the dimen-

sions of the robot while keeping the segments respective

directions. The scaled skeleton has the dimensions of the

robot, with the same body pose as the human, as shown

in Fig.1. This scaling can be used with any motion capture

system which provides human joint positions/orientations in

the Cartesian space. The 3 Cartesian coordinates of a joint

ℓ are denoted pℓ = [xℓ, yℓ, zℓ]
T . Points phℓ on the human

skeleton are translated and become points on an equivalent

robot skeleton prℓ . The iterative process starts from a point

on the support foot, which is fixed to the ground, and moves

upwards toward each limb extremity, joint by joint. The

scaling is performed in 3 steps:

1) The direction of a human segment ℓ is taken (vector

normalization, free vector);

2) The free vector is multiplied by the corresponding

segment length on the robot lrℓ ;

3) The scaled segment is placed on the kinematic chain

after its antecedent pr
a, where a stands for the an-

tecedent of frame ℓ

In summary:

pr
ℓ =

ph
ℓ − ph

a

‖ph
ℓ − ph

a‖
lrℓ + pr

a (1)

Due to the limited number of degrees of freedom (dof)

in robots, there are points which can move in relation to

each other on the human, but not on the robot. That is

Fig. 1. Scaling human joint positions (black) to humanoid joint positions
(blue). Example using the Kinect sensor and the NAO robot.

notable for the spine, for example. In case the robot torso

is rigid, to maintain the distances connecting shoulders and

hips should be constant after scaling, a segment which goes

from the MidHip to the MidShoulder is scaled, preserving

symmetry.

During online imitation, the scaling is performed at each

time step. No previous knowledge of the human dimensions

is needed as the joint positions are used directly. Therefore,

the scaling works for any actor and is not affected by segment

length variations in the motion capture system. The scaled

motion does not respect the robot limits or ensures balance. It

is used to find a reference motion fit to the robot dimensions.

B. Task specification

The robot redundancy will be used to specify several

constraints in its motion. Task specification (or Task classi-

fication, or Task prioritization) allows adding terms to the

IK forcing the robot configurations into desired ones or

minimizing additional terms [11]. Let us describe a strict

task j by an equality constraint equation:

q̇ = J+

j Ẋj , (2)

and a minimization task k by an optimization constraint

equation:

q̇ = κk∇qfk(q). (3)

where Jj denotes the Jacobian matrix related to task Xj ;

κk is a weight tuned according to the task importance and

∇qfk(q) is the gradient of function fk with respect to the

joint angle vector q. The iterative process considering the N

equality constraints associated to their respective priority is

the following, for j = 0..N .

q̇0 = 0

q̇j+1 = q̇j + (Jj+1P
a
j )

+(Ẋj+1 − Jj+1q̇j)
(4)

where q̇j is the joint velocities vector realizing strict tasks

0 to j. Pj and Pa
j are the projectors on the kernels of the

task Jacobian matrices Jj and Ja
j respectively:

Pj = I− J+

j Jj

Pa
j = I− (Ja

j )
+Ja

j

(5)



I being the identity matrix. Ja
j denotes the augmented

Jacobian matrix Ja
j defined as the concatenation of matrices

J1 to Jj . Introducing M optimization constraints, we obtain

the following equation.

q̇M = q̇N +Pa
N

M
∑

k=1

κk∇qfk(q) (6)

As many tasks as wished can be added as equality or

optimization constraints, as long as the robot’s redundancy

is sufficient. Some tasks related to humanoid imitation of

human motion are further described.

1) Cartesian trajectory tracking: The task vector Xt

consists of the scaled poses for the robot end effectors.

The vector contains at most 6 coordinates (3 translations,

3 rotations) for each tracked effector. Typical effectors are

hands, feet, head and waist, but in fact any other frames in

the human body can also be tracked. Denoting the length

of q (the robot dof) as nr, for mt tracked coordinates, the

dimension of Jacobian Jt is nr ×mt.

2) Keeping balance: The task vector X′

c = (xc yc)
t

contains the absolute position of the center of mass (CoM)

projected on the horizontal plane. Jc denotes the nr × 2 Ja-

cobian matrix transforming the CoM velocity vector into the

joint velocity vector. In this approach, we have constrained

the CoM projection to remain superposed to a fixed reference

point on the robot sole.

3) Avoiding robot joints limits: Avoiding robot joints lim-

its is very important to perform efficient imitation, because

if the solution surpasses physical limits, the balance may not

be met. This criterion is defined by minimization:

fℓ =

nr

∑

i=1

(

qr(i)− q̄r(i)

qrmax(i)− qr
min

(i)

)2

(7)

where qr(i) is the i-th component of vector qr, q̄r =
1

2
(qrmax + qrmin), and qrmax and qrmin denote respectively the

maximum and minimum joint limits.

To ensure that the values will be fit into the allowed range,

a clamping loop [11] is added. After the IK including all

tasks has been solved, the loop checks whether all joints

are within their limits. For those which are not, their values

are fixed to their limits and their respective columns in the

Jacobians are zeroed. The IK is then solved again, with less

dof. This is repeated until all joints fit their limits.

4) Tracking human joint positions: The robot tracks hu-

man joint values which correspond to its dof as an optimiza-

tion constraint. Here, qh′

is the human generalized position

vector matching the size and the joints of qr.

fh =

nr

∑

i=1

(qr(i)− qh
′

(i))2 (8)

III. CHANGE OF SUPPORT

A. Scaling different support phases

To deal with support changes, the scaling process is

adapted to each support phase (right RS, left LS or double

support DS). A foot is considered to be in support if its

vertical distance from the ground is lower than a given

threshold. For the single support phases (right or left), the

data is scaled as described in section II.A, beginning by the

support foot and moving toward each end-effector as a tree

structure.

During double support (DS), it is important to ensure that

the tracked trajectories for both feet are at ground level.

To that end, both feet heights are fixed beforehand even if

the data from the motion capture system shows a difference

between the reference feet heights. The closed loop formed

by the legs is scaled from the point between the ankles to that

between the hips without going through the knees. From the

hips onwards the scaling is the same as for single support.

An example for the scaling of each support is seen in Fig. 2.

(a) Right (b) Left (c) Double

Fig. 2. Scaling human joint positions to humanoid joint positions for
different support phases.

When the human lifts a foot beyond the support threshold,

the scaling changes from DS scaling to a single support

scaling. Conversely, when the human places a foot on the

floor, the scaling fixes the foot on ground level before scaling

other joints. The horizontal coordinates of the robot foot are

chosen proportionally to the position of the human foot,

fitting into an area on the floor where the robot is able

to place the foot flat. This area is determined beforehand

experimentally.

B. Tracked coordinates for various supports

To reduce the number of tracked coordinates, the robot is

modeled with one foot fixed to the world frame (implicit

constraint). For single support, the support foot frame is

taken as the origin. The scaled data is transformed to this

frame before the IK is solved. The reference position for the

CoM projection is under the ankle of the support foot, to

minimize the torque needed on the ankle.

For double support, the robot is also modeled with one

foot fixed to the world frame. Let us choose the right foot to

be the origin. In this case, it is necessary to ensure that the

left foot is flat on the same plane as the right foot. Therefore,

although during single support it would be fine to track only

the left foot position, for example, during double support

6 dof must be tracked to ensure both feet are flat on the

ground. As for the projection of the CoM, it is set to the

point between the two feet during double support.

The transition between single and double supports happens

in 2 steps. When a foot is to be taken off, first the projection

of the CoM is moved to the other foot, then the foot is



lifted parallel to the ground. When a foot is to be landed,

the steps go in an opposite order: first the swing foot is

lowered parallel to the ground, then the projection of the

CoM is brought back to between the feet.

To increase stability while a foot is being lifted or lowered,

the CoM goal is set not to the projection of the ankle, but

to a point closer to the center of the foot. To facilitate the

transition, the number of constraints on the movement can

be reduced by setting all effectors free except for the foot.

IV. EXPERIMENTATIONS

A. Setting

The humanoid robot NAO (Aldebaran Robotics) was used

for the experimental validation. This small robot only has 23

dof for its body, when not considering the open and close

of the hands. This considerably limits the number of tasks

possible in the stack as the redundancy order remains low.

The 3D human data were captured using a Microsoft

Kinect sensor. This sensor tracks 15 points in the human

body, previously shown in Fig. 1. Although the data are

quite noisy, no filtering is being performed, not to waste

imitation time. To avoid the legs shaking during DS, both

feet positions are kept the same as the previous time step.

A foot is considered to be in support if the data received

is below the vertical threshold of 200 mm. This is a large

number in order to avoid false positives due to jittering.

Two programs were developed in C++ and run at the same

time. One program acquires the motion capture data from

the Kinect at 60 Hz, detects the type of support and scales

the motion accordingly. The other receives the scaled data,

calculates the IK and sends the results to the robot via wi-fi.

In total, four tasks are performed. The two equality tasks

are: keeping balance with the highest priority, followed by

Cartesian tracking. The two optimization tasks, avoiding

limits and joint space tracking, are projected into the kernel

of the previous tasks and thus have a lower priority. A weight

five times larger was given to the limits task than to the joints

task (κl = −0.10, κh = −0.02). A clamping loop was also

added. A time step consists of computation time plus motion

time. The robot speed was set to 10% of its maximum speed

in order to avoid high accelerations, which is the main time

constraint of the system.

B. Tracked coordinates

Two robot models were implemented using modified DH

parameters [12], one based on the right foot (the RFoot

model, used for RS and DS phases), and one based on the

left foot (LFoot model, for LS). All models are described

with the z axis pointing upwards in the vertical and the x

axis pointing to the robot front. The tracked coordinates Xt

and X′

c vary according to the support phase and the step

during transition. A summary of all tracked coordinates is

shown in Tab. I. The referred frames are detailed in Fig. 3.

Since one foot is always attached to the absolute frame,

at most 3 effectors are being tracked at the same time:

right hand, left hand and the free ankle. Due to the limited

number of dof in the NAO robot, the effectors orientations

Fig. 3. Frames and offsets tracked during online imitation

are not tracked unless it is necessary to place a foot flat on

the ground. Thus, only the 3 Cartesian coordinates for each

effector are tracked during single support phases.

During DS, the left foot must be kept flat on the ground.

Experimentally, it was noted that the IK cannot come to a

solution respecting balance and feet yaw (orientation about

the vertical axis) constraints at the same time, especially

because NAO legs have a total of 11 dof together, and only

one of these dof (the pelvis joint) affects the yaw of the

feet. This same dof also influences the orientation of the

torso, greatly affecting the position of the CoM. Due to this

kinematic limitation, the left foot yaw is not being tracked

and only 5 dof are being constrained: 3 coordinates of the

left ankle (pLA) and the vertical height of two points on the

sole (zLF , zLT ).

During transitions, the hands are left free and only the

5 dof for the swing foot are being tracked. During CoM

placing tasks, the feet are maintained flat on the ground with

the vertical coordinates zℓ = 0 and the CoM is placed with

an offset λ = 15mm. The transitions into single support

finish when the swing foot is lifted to a height ρ = 30mm.

C. Poses

The system was tested by several actors performing a wide

range of slow motions. The robot was able to track the human

motion in time and space while keeping balance during

all support phases. Support transitions happened smoothly,

taking a minimum of 3 s and a maximum of 12 s to be

finalized. The average time step took 420 ms (2.4 Hz), 10%

of this time spent solving the IK and 90% spent moving.

D. Cartesian tracking

Fig. 5 shows the imitation online for a DS-RS-DS motion.

In other words, a step forward. The tracking of end-effectors

with respect to the absolute frame is shown in time in Fig. 6

and in space in Fig. 7. For the DS to RS transition, the robot

takes a while to finally lift the foot from the floor, since it

has to carefully move the CoM and lift the foot parallel to



TABLE I

TRACKED COORDINATES FOR EACH SUPPORT PHASE

Support Step Model Xt X′

c

Continuous support

RS RFoot X
(9×1)
t

= [p
(3×1)
LH

,p
(3×1)
RH

,p
(3×1)
LA

]T X
′(2×1)
c = [0, 0]T

LS LFoot X
(9×1)
t

= [p
(3×1)
LH

,p
(3×1)
RH

,p
(3×1)
RA

]T X
′(2×1)
c = [0, 0]T

DS RFoot X
(11×1)
t

= [p
(3×1)
LH

,p
(3×1)
RH

,p
(3×1)
LA

, zLF = 0, zLT = 0]T X
′(2×1)
c = [xLA/2,yLA/2]T

Support transition

DS to RS
CoM to RFoot RFoot X

(5×1)
t

= [p
(3×1)
LA

, zLF = 0, zLT = 0]T X
′(2×1)
c = [λ, 0]

Lift LFoot RFoot X
(5×1)
t

= [p
(3×1)
LA

, zLF = ρ, zLT = ρ]T X
′(2×1)
c = [λ, 0]

DS to LS
CoM to LFoot RFoot X

(5×1)
t

= [p
(3×1)
LA

, zLF = 0, zLT = 0]T X
′(2×1)
c = [xLA,yLA]T

Lift RFoot LFoot X
(5×1)
t

= [p
(3×1)
LA

, zRF = ρ, zRT = ρ]T X
′(2×1)
c = [λ, 0]

RS to DS
Lower LFoot RFoot X

(5×1)
t

= [p
(3×1)
LA

, zLF = 0, zLT = 0]T X
′(2×1)
c = [λ, 0]

CoM to middle RFoot X
(5×1)
t

= [p
(3×1)
LA

, zLF = 0, zLT = 0]T X
′(2×1)
c = [xLA/2,yLA/2]T

LS to DS
Lower RFoot LFoot X

(5×1)
t

= [p
(3×1)
LA

, zRF = 0, zRT = 0]T X
′(2×1)
c = [λ, 0]

CoM to middle RFoot X
(5×1)
t

= [p
(3×1)
LA

, zLF = 0, zzLT = 0]T X
′(2×1)
c = [xLA/2,yLA/2]T

Fig. 4. Example of poses achievable during online imitation including
support changes.

the ground. After that, the robot catches up with the actor’s

movement during RS.

During the transition from RS to DS, the foot was not

initially placed on its final goal. Once the foot was already

on the ground, during the following time steps in DS, the foot

was correctly slid to the position it should be on the ground.

This detour was allowed to improve convergence rates.

E. Balance

For the same DS-RS-DS movement, the projection of

the CoM on the floor and the position of the support feet

(when in contact with the floor) are plotted in Fig. 8. The

movement of the CoM from in-between the feet to the single

support foot and then back to the point between the feet is

clearly seen. It is also possible to observe that the left foot

was placed in a position 137 mm ahead of the initial one,

performing a step forward.

Fig. 6. Tracked Cartesian trajectories in time referent to the motion in
Fig. 5

V. CONCLUSIONS

In this paper, a method to convert online the human change

of support into humanoid robot motion was introduced.

Taking a kinematic approach based on inverse kinematics

with task specification, four tasks were performed: Cartesian

tracking, keeping balance, avoiding joint limits and joints

tracking. This method allows changing the support leg by

altering the coordinates tracked for the effectors and for the

center of mass at different support phases. To reinforce the

limits avoidance, a clamping loop was added.

It was shown that a segment by segment scaling of the

human motion to robot proportions is enough to define

trajectories in the Cartesian space which maintain the overall

posture throughout imitation and allows for precise support

changes.

The method was validated using NAO robot and a Kinect

motion capture system. Experiments with several performers



Fig. 5. Online imitation changing support: double support to right support to double support.

Fig. 7. Tracked Cartesian trajectories in space referent to the motion in
Fig. 5

showed satisfactory results for the imitation of a wide vari-

ety of support changes. The end-effectors are successfully

tracked both in time and space. The same can be said

for the projection of the CoM on the ground. Compared

to other methods in the literature, the present approach

better preserves the nuances of human motion during whole-

body online teleoperation while working with an uncluttered

motion capture system, thanks to the absence of motion

primitives.

Future work will focus on tracking the ZMP to increase

movements velocity and validating the method using other

robotic platforms for generalization purpose.
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