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Abstract

Humanoid robots are made to the image of human beings. Consequently, it is natural to
use human motion as an input to generate humanoid motion. This process is commonly
referred to as imitation and it poses several challenges due to the kinematic and dynamic
differences between human beings and robots. Due to these difficulties, real-time human
motion imitation while keeping balance and changing supports is still an unsolved problem
in the literature.

In this research, imitation based on inverse kinematics with task specification was imple-
mented. Four tasks were performed: end-effector tracking, keeping static balance, joint
space tracking and avoiding joint limits. The imitation is carried out online using either
a markerless or a marker-based motion capture system.

The captured human motion’s task space is scaled to the robot’s size segment by segment
at each time step. From this scaled motion, the desired end-effector poses are taken. The
joint space is captured from the human motion only for the joints which correspond to the
robot’s degrees of freedom. Distinction is made between single support and double support.

The task prioritization process takes into account equality tasks and optimization tasks.
A clamping loop is added in order to keep joints within their limits: some angles are
fixed to their limits and the inverse kinematics is solved with the joints left free. The
constraints are chosen according to the type of support or transition between supports:
during transition, the center of mass is placed onto the desired support polygon and the
swing foot is kept flat when close to the floor.

The method was validated with the 23-degrees-of-freedom NAO robot. This approach al-
lows for online imitation closely tracking a wide variety of slow human movements with
the whole body, including locomotion, while keeping balance and maintaining the nuances
of human motion. Several human performers were able to use the system quickly due to
its intuitiveness.



Résumé de thèse

Robots humanöıdes sont faits à l’image des êtres humains. Par conséquent, il est naturel
d’utiliser le mouvement humain comme entrée pour générer un mouvement humanöıde.
Ce processus est communément appelé imitation et il pose plusieurs défis en raison des
différences cinématiques et dynamiques entre humains et robots. En raison de ces dif-
ficultés, l’imitation des mouvements humains en temps réel, en gardant l’équilibre et
l’évolution des supports, est encore un problème non résolu dans la littérature.

Dans cette recherche, l’imitation basée sur la cinématique inverse avec des spécifications
des tâches a été mis en oeuvre. Quatre tâches ont été effectuées: le suivi des effecteurs,
le maintien de l’équilibre statique, le suivi des articulations humaines et l’évitement de
butées. L’imitation est réalisée en ligne en utilisant des systèmes de capture de mouve-
ment sans marqueurs ou avec marqueurs.

L’espace opérationnel du mouvement humain mesuré est adapté à la taille du robot, seg-
ment par segment, à chaque pas de temps. De ce mouvement mise à l’échelle, les poses
souhaitées pour les effecteurs sont prises. L’espace articulaire est capturé à partir du
mouvement humain que pour les articulations qui correspondent aux degrés de liberté du
robot . Distinction est faite entre le simple support et le double support. La définition des
priorités des tâches tient compte des tâches de l’égalité et des tâches de l’optimisation.

Une boucle est ajouté afin de maintenir les articulations au sein de leurs limites: certains
angles sont fixés à leurs limites et la cinématique inverse est résolue avec les articulations
libres. Les contraintes sont choisies en fonction du type de support ou de transition entre
supports: pendant la transition le centre de gravité est placé dans le polygone de support
souhaitée et le pied pivotant est maintenu à plat quand près du sol.

La méthode a été validée avec un robot NAO de 23 degrés de liberté. La méthode per-
met d’imitation en ligne suivi d’une grande variété de mouvements humains lents avec
l’ensemble du corps tout en gardant l’équilibre et les nuances du mouvement humain.
Plusieurs interprètes humains étaient capables d’utiliser le système rapidement en raison
de son caractère intuitif.
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I am grateful to Denis Ćehajić for taking the time to explain his research to me and mak-
ing his implementation available, hvala! I also owe a lot of gracias to Michelle Garćıa, the
best lab partner one could ask for, and a lot of mulţumesc to Victor Rosenzveig, the most
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Chapter 1

Introduction

1.1 Humanoid robots

The field of robotics encompasses a wide range of machines, from industrial manipulators
to autonomous cars, biomimetic robots, etc. Although a vast topic, in popular culture
the word robot commonly refers specifically to one of the many branches in robotics:
humanoid robots. In fact, the word robota, which means ”labour” in Czech language,
was coined as a term for machines resembling human beings by Karel Čapek in his play
Rossum’s Universal Robots (R.U.R.), which portrayed mechanized slaves [1]. Indeed,
humanoid robots are a recurring subject in science fiction and thus one of the most fas-
cinating and expected technological advancements of our time.

Besides the satisfaction of human curiosity and imagination, the integration of humanoid
robots in our daily lives makes sense for a variety of practical reasons. Robots resem-
bling us would make human-robot interaction more natural and thus more intuitive and
pleasurable. Moreover, if robots are to assist people in daily chores, they have to fit the
human environment, which is suitable for human morphology [2]. Performing tasks with
two hands, handling tools, climbing stairs, reaching shelves - to name only a few tasks -
require our assistants to have a similar morphology to ours, so robots can adapt to human
lives, instead of us having to do the opposite. Furthermore, research in humanoid robots
directly contributes to the field of prosthetics and exoskeletons.

The challenges in creating such machines are numerous. Human bodies are energy efficient
machines with extremely elaborated mechanics and incredible cognitive and perceptual
abilities. Thus, the creation of humanoid robots requires advances in more areas than
one, from the improvement of sensors and processing of information, to efficient control
techniques and suitable mechanical structures with constraints in shape, size and weight
to improve the resemblance to human beings.

Figure 1.1 illustrates part of the evolution of humanoid robots throughout history, from
Leonardo da Vinci’s first drawn mechanism in 1495 to Aldebaran Robotics ’ affordable
NAO robot nowadays [3].
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Figure 1.1: Some robots from ancient times to present time. (a) First humanoid by Leonardo
da Vinci in 1495, (b) Steam Man in 1865, (c) Electric man in 1885, (d) ELEKTRO
in 1938, (e) BIPER-4 in 1984, (f) Tron-Xm developed, Australia, 1997, (g) H6,
Tokyo University, 2000, (h) Robot JACK in September 2000, (i) GuRoo in 2002,
(j) QRIO from SONY in 2003, (k) Partnar Robot by Toyota Motor Company
in 2004, (l) TwendyOne in 2007 from Waseda University, (m) REEM-A, chess
player robot by UAE in 2007, (n) REEM-B by UAE and (o) NAO, in France
2008. Adapted from [3].
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1.2 Human motion

Walking, running, jumping, dancing, ball-catching, manipulating delicate objects, climb-
ing, swimming or simply standing up. The human body can perform an incredible wide
range of motions using its 206 bones and 640 skeletal muscles guided by several senses:
sight, hearing, taste, smell, touch, balance, proprioception and time. Kinesiology is the
science which studies all the complexities of human motion. Human behaviour is charac-
terized not only by the set of movements which our bodies can achieve, but also by the
cognitive processes which lead us to the decisions of how to move [4]. The applications
of the study of human motion include ergonomic products, prosthetics, animation and
robotics.

Mechanically, the human body is so elaborate that simplified anthropometric models
must be used in order to reduce it to a reasonable complexity. Commonly, the body’s
continuity is divided into a small number of discrete body parts which are approximated
as geometrical solids. All the different tissues (bones, muscles, skin, etc.) are grouped
into rigid solids with constant density for each body segment. For example, the Hanavan
Model [5] is based on 25 anthropometric measures to estimate the dimensions of 15 body
parts of simple geometry, as shown in Figure 1.2.

Figure 1.2: Human body approximation by rigid solids (Hanavan model). Adapted from [5].

In order to analyse the relative motions between these rigid bodies, they are commonly
arranged in an open kinematic chain with a tree structure that has 5 end-effectors (one
for each limb and the head) and its waist is the root which can be placed with any pose
(6 DOF ) in relation to the environment. These geometric and kinematic approximations
are especially useful for robotics, since most existent humanoid robots are composed of
a small number of rigid links connected in series.

Tracking human motion is another challenge. Kinematic motion capture can be per-
formed with mountable sensors, such as suits, or remote sensors, like cameras. Note that
some remote sensors might require the need for something to be mounted on the body,

3
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but in this case the mounted objects are called markers, as they are tracked in 3D by
the the external sensors. Each motion capture system has its advantages and drawbacks
according to the motion being investigated. A non-exhaustive review of current motion
tracking technologies is proposed in Section 2.1.1.

Due to the body’s non-uniform nature, measuring the body’s dynamic parameters is also
challenging. The inertial properties of body parts cannot be simply measured one by one
and must be estimated based on statistical studies of the human population. Dynamic
measurements during movement can be made with force sensors located in strategic places
according to the observed motion. The dynamics of segments can only be estimated using
kinematics and external force measurements.

1.3 Imitation

Given the resemblance between humanoid robots and human beings, it is natural to look
for inspiration in human movements in order to generate motion for the humanoid. The
most straightforward way is to have the robot observe what the human does and repro-
duce that behaviour, i.e. perform imitation. After all, even human beings themselves are
able to acquire skills by imitation and learning [4, 6].

If humanoid robots are to interact with human beings, it is imperative that their gestures
are human-like since much of human communication is non-verbal [7]. Programming each
aspect of the motion detail by detail in order to make it human-like is time-consuming
and not fit to handle the immense variety and complexity of human behaviours. Thus,
imitation comes as a more natural and intuitive alternative to classical methods [4], since
more information can be transmitted directly.

Imitation has been widely studied in psychology of animals and human beings. In the
most advanced meaning of the word, imitation means to perform a behaviour after having
witnessed it [4]. Thus, imitation as found in animals and human beings is more than the
simple act of copying movements, since it includes the understanding of the task being
performed and allows for flexibility in face of variant conditions (also referred to as imi-
tation learning [8]).

However, several applications do not require the robot to fully understand the task be-
ing performed and its objectives. For example, if a robot is being teleoperated with the
teleoperator’s movements, the human being can adjust their movements to the task at
hand according to the feedback received from the robot. In such situations, a simple
reproduction of movements without providing the robot with understanding suffices (can
be referred to as motion imitation). This could be seen not as teaching the robot a skill,
but simply as using the robot as a performer for the needs of the human being. For
this type of imitation, it is imperative that the motion retargeting occurs in real time.
Teleoperation/telepresence is useful in hazardous situations where the human body could
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be in danger, such as fires, radioactivity or even in space [9].

Motion imitation does not come without its challenges; even the most advanced humanoid
robots have a different kinematic and dynamic structure to the human, such as number
of degrees of freedom, joint, velocity and acceleration range, link lengths, mass distribu-
tion, etc. Thus, proper strategies must be made in order to transfer the captured human
motion to the robot structure.

An implementation of human dance moves transferred to the HRP2 robot can be seen
in Figure 1.3. The robot was able to perform the moves while keeping balance, but the
imitation was done with pre-processed data, not in real-time [10].

Figure 1.3: Dance performed by the HRP2 robot through offline imitation. Adapted from
[10].

1.4 Report overview

This chapter provided an overview of humanoid robots, human movement and imitation.
In the following chapter, the state-of-the-art in capturing human motion and generating
robot motions will be reviewed, while in Chapter 3, specific problems in imitation will be
covered.

In Chapter 4, the theory used in this research, task priority-based inverse kinematics, will
be covered in detail. In Chapter 5, the application of this theory to imitation in single
support will be explained. Finally, imitation including support changes will be presented
in Chapter 6. Chapter 7 will conclude the report with final remarks and perspectives for
future work.
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Chapter 2

Motion representation

Human motion - robot motion. This chapter deals with the specific problems of capturing
the motion of a human being and of generating the motion for a robot. The motion
capture section will mention the various systems found in the literature, while the motion
generation section will explain the various methods of choosing trajectories for the robot
to follow.

2.1 Human motion observation

This section will consider the literature on human motion capture and the subsequent
kinematics and dynamics estimations.

2.1.1 Motion capture

Several motion capture systems have been developed in order to measure human motion.
Each system comes with its advantages and drawbacks. We describe hereafter the most
commonly used non-invasive systems for kinematic and dynamic measurements.

2.1.1.1 Embedded sensors

Some kinematic sensors can be directly attached to the body, such as electrogoniometers
and accelerometers [11]. The former measures the angle between segments and the latter
measures their acceleration. Therefore, the data obtained through these sensors must be
derivated or integrated and filtered in order to be used. Figure 2.1 shows an example of
a motion capture system where accelerometers were embedded on a shirt [12].
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Figure 2.1: Motion capture system based on accelerometers. Adapted from [12].

2.1.1.2 Marker-based systems

Motion capture systems based on vision are very popular. These can be divided into sys-
tems which use markers, and markerless systems. Marker-based motion capture consists
of tracking markers attached to the body by cameras in 3D space as shown in Figure
2.2. Markers are made so they can be easily distinguished from the background. For
example, reflective or light-emitting markers can be easily tracked by infra-red cameras.
These markers are tracked by at least two cameras and their position in 3D is estimated
at each time step by the triangulation of the 2D positions as is done with stereovision.
The more cameras there are, the bigger is the volume of capture and the lower are the
risks of occlusion (loss of marker).

Figure 2.2: Motion capture system based on markers. Adapted from [13].

Since the body is being approximated as rigid solids, it is of our interest to place markers
in positions which move together with the big body masses which we are estimating. This
means that we should choose our body landmarks as close as possible to bones, that is,
at places where bones come close to the surface of skin. Nevertheless, no matter how
well the landmarks are chosen, there will always be soft tissue between the bone and the
marker, giving origin to movements between the two. These undesired movements are
called skin artefacts, and they can be easily observed for example during impact, when
the soft tissues vibrate in higher frequencies than the hard tissues. The method to deal
with this problem is called solidification [14], which consists of measuring the relative
motions between markers that should be fixed in relation to each other and choosing
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the best fit position for them. Once the marker positions have been defined, anatomical
frames of reference can be assigned to each moving body segment.

Marker-based systems are currently the ones which provide the most accurate results.
However, the need to place markers on the subject makes the system inconvenient. Also,
as many cameras as there might be, it is common for markers to be occluded during the
motion and some preprocessing of the data must be made beforehand to fill these gaps
[15].

Some experiments in this research are performed with a marker-based system. This spe-
cific system will be introduced in Section 5.1.2.2.

2.1.1.3 Markerless systems

Markerless systems come as a more convenient way of capturing human motion, as noth-
ing must be placed on the subject. These systems work by tracking body descriptors
in images [11]. Body descriptors are anatomical features such as the shape of a head, a
hand, an elbow, etc.

Single camera based markerless systems acquire information in two dimensions and must
therefore estimate the depth of each feature by its relative size. Systems with 2 cameras
can use stereovision to rebuild the 3D position of features from 2D images. More re-
cent systems combine camera information to depth information provided by laser depth
sensors. An example of such a system is the Microsoft Kinect sensor [16]. Markerless
methods in general have worse accuracy than marker-based ones due to the difficulties
related to feature extraction in computer vision. Motion jittering and change in segment
dimensions during the motion are common problems.

The specific markerless system used in this research will be introduced in Section 5.1.2.1.

2.1.1.4 Force capture

The systems described above focus on the kinematics of the movement. However, the
dynamics are also important for robotic applications and increasingly for animation pur-
poses in order to increase realism [17].

When not interacting with objects, human bodies are subject to only two forces: weight
and ground reaction forces (GRF ). Ground reaction forces can be measured by force
plates equipped with piezoelectric materials or with strain gauges strategically arranged
on the floor so they can give the 6 components of the ground reaction (3 forces and 3
moments) [11].
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When human beings interact with objects the forces between the human body and the
object are usually important as well. In this case, force sensors can be placed onto surfaces
o interest. If the interaction is manipulation, force sensors can be placed on fingertips;
for a sitting interaction the sensors are placed on a chair and so on.

2.1.1.5 Electromyographic measurements

Electromyographic (EMG) measurements (electrical activity of skeletal muscles) are also
interesting for some studies as they give information about movement timing and force
[11]. They can be measured with electrodes placed on the surface of the skin.

2.1.2 Motion analysis

After the human motion has been captured, the problem arises of how to analyse this
motion. This section briefly explains how to extract kinematic and dynamic information
from captured motion.

2.1.2.1 Kinematic chain

When using marker-based motion capture systems, segment frames and joint frames must
be estimated from the captured marker positions. The International Society of Biome-
chanics (ISB) proposes a convention for the placement of markers on the body and frame
definitions for the body segments and joints [18]. As an example, on Figure 2.3 the co-
ordinate system definitions for the tibia/fibula (calf of the leg) and the calcaneus (ankle)
are shown. The symbols LC, MC, TT, LM and MM correspond to the tracked markers
placed over the skin near the bone. The frames are defined based on these markers ac-
cording to the guidelines.

With all the body coordinate frames properly attached, the kinematic chain can be stud-
ied with the use of, for example, homogeneous matrices. The ISB does not have specific
recommendations for frame attachment for motion captured with markerless systems, so
the frames must be approximated as the researcher sees fit.

2.1.2.2 Body inertial parameters

In order to analyse the dynamics of motion, the Body Inertial Parameters of the human
being under study must be estimated. This is a set of parameters used to represent
the body through geometrical shapes. Unlike robots, whose parameters are well known,
bodies are difficult to measure as the parts cannot be individually separated, measured
and weighed.
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Figure 2.3: Conventions for human reference frames recommended by the ISB. Adapted from
[18].

The first model to approximate the body with homogeneous rigid solids was proposed
by Hanavan in 1964 [5] and was previously shown in Figure 1.2. Since then, several
authors have proposed alternative divisions, for example, Yeadon [19] makes use of 95
anthropometric measurements to define 40 geometric solids. Figure 2.4 illustrates the
division proposed by Kwon [20], known as the Modified Hanavan Model, formed by 16
solids approximated with 41 anthropometric measurements.

Figure 2.4: Modified Hanavan Model. Adapted from [20].

The difficulty in approximating the body with simple shapes is that during motion, hu-
man segments change in length, volume and mass distribution. Statistics made with
thousands of human subjects gave origin to equations which approximate the density, in-
ertia matrix and dimensions of the geometrical solids used in the Modified Hanavan Model.

Putting together the kinematic chain and the inertial parameters, kinematic (position,
velocity, acceleration) and dynamic (momentum, forces, energies) analysis can be made.
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2.2 Robot motion generation

Human beings are set apart from other animals by their impressive reasoning skills. Hu-
man beings are able to extract the important information from the task at hand in order
to achieve the desired goals. But in similar ways to animals, our brains not only coordi-
nate body movements, but also make elaborate decisions of how and when to move based
on the feedback received from the senses.

There are various ways of generating motion to robots in order to handle their redundancy
and rigidity while maintaining balance. This section reviews some of these strategies.

2.2.1 Direct kinematics

The geometric model of a robot is the function which calculates each end-effector’s pose
(task space) given the position of each joint angle in the chain (joint space) [21]. The
kinematic model is the equivalent for the velocities, and in this case, the matrix which
relates the joint space velocities and task space velocities is called the Jacobian matrix.
In-depth mathematical aspects can be found on Chapter 4.

When using the direct kinematic model, the positions and velocities of each joint in the
chain are known. Thus, generating motion for the robot based on the direct kinematics
requires just the input of joint angles to the robot [8]. When the robot is programmed
in a low level, joint trajectories are carefully designed so the robot performs as desired.
This method can be time-consuming due to the large number of DOF in humanoids.

An alternative to describing each detail of the motion is to adapt captured human joint
angles to the robot. This way, the redundancy of the robot is dealt with and the motion
generated is human-like. Due to the kinematic differences between the human and the
robot, however, this is not a straightforward process. Joint trajectories which ensure bal-
ance for the human might not do the same for the robot. Moreover, the limited number
of DOF in robots mean that not all human joints can be imitated. These and other
difficulties specific to imitation will be addressed in the next chapter.

2.2.2 Inverse kinematics

Inversely to the direct geometric and kinematic models, the inverse geometric and kine-
matic models are the ones which, given a desired end-effector pose or velocity, provide
the necessary joint positions and velocities respectively [21].

With this method, the only desired feature is the pose of a few chosen effectors, while the
state of all other frames is ignored. This can be used with pure programming or imitation:
in the former, the end-effector pose to be tracked is designed by the programmer, while
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in the latter the desired poses come from captured human motion.

In the field of computer animation, inverse kinematics (IK ) has been widely used to gen-
erate the motion of animated characters from captured human motion [22]. As shown in
Figure 2.5, depending on the geometric differences between the human and the character
or robot, the resulting overall body configuration can be very different.

Figure 2.5: Inverse kinematics mapping from human to animated character. Adapted from
[22].

It is worth noting however that there are tasks in which the overall configuration of the
body is not as important as the position of the end-effector. For instance, when interact-
ing with objects, it is necessary to track the absolute position of the end-effector in the
Cartesian space so as to make sure that the object will be reached, as shown in Figure
2.6. Thus, whether to use direct or inverse kinematics should be chosen according to the
task at hand [22].

Figure 2.6: (a,b) Mapping by direct kinematics, (c,d) Mapping by inverse kinematics.
Adapted from [22].

In robotics, this method has been widely implemented. Most authors do not use sim-
ple inverse kinematics though. The structure of a humanoid robot is redundant, which
means that it has more DOF than the number needed to position its end-effectors during
most applications. Thus, the extra DOF can be used to perform other tasks, such as
balancing, avoiding singularities, dodging obstacles, minimizing energy consumption, etc.

Usually more than one aspect of the motion must be transmitted to the robot at once.
To this goal, the concept of task prioritization comes in handy. When solving the inverse
kinematics, the Jacobian of one task can be projected into the null space of another to
allow secondary tasks to be performed [21]. Montecillo et al. [13], for example, divided
their tasks into position, orientation and center of mass. This way, even if not all con-
straints can be solved, at least the most important aspects of the motion are followed.
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Dariush et al. [23] also arranged their task descriptors according to priorities. In this
research, inverse kinematics with task specification will be used, so a detailed description
of the method is found in Chapter 4.

2.2.3 Motion primitives

Instead of being treated as a continuum, motion can be subdivided into a finite set of mo-
tion primitives. Motion primitives are a set of pre-designed joint trajectories commonly
described in the joint space (a special case of direct kinematics). The advantage of this
method is allowing high-level programming. On the downside, limiting the motion to
only a few possibilities constraints the number of achievable poses. For example, instead
of performing different types of kicks, whenever a kick motion is required, the robot al-
ways performs the same movement of the leg which is known to work.

Motion primitives were implemented by Nakaoka et al. [24] as a way to facilitate the
imitation of leg motions. They divided all the possible leg motions during a dance into
three primitives (stand, squat, step), as shown in Figure 2.7.

Figure 2.7: Leg motion primitives for dancing. Adapted from [24].

2.2.4 Task descriptors

Generating motion based on the task space rather than the joint space is more flexible as
to the ways to represent the motion. Therefore, motion can be represented by high level
task descriptors as was done by Dariush et al. [23], where high level tasks were organized
according to their priorities. This is a special case of inverse kinematics. An example of
the descriptors assigned for the upper body is seen in Figure 2.8. This simplification of
representation releases some computational burden.

2.2.5 Locus of attention

Human beings coordinate the motion of several degrees of freedom at once, yet, this does
not mean that conscious effort is being put to control each one of them. Neo et al. [25]
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Figure 2.8: Upper body high level task descriptors. Adapted from [23].

used the concept of a ”locus of attention” to teleoperate a humanoid in real-time by
focusing on specific regions of the body one at a time as shown in Figure 2.9. In their
work, the human operator successfully generated full motions for the HRP-1S robot with
the help of a joystick.

(a) (b)

Figure 2.9: Teleoperation in real-time by focusing on a locus of attention. (a) Different loci ac-
cording to the task performed. (b) Joystick-based teleoperation system. Adapted
from [2] and [25].

2.2.6 Resolved momentum

When performing fast motions, the dynamic effects cannot be ignored since a lot of
momentum is built up. Considering dynamics into the motion, Kajita et al. [26] imple-
mented a controller on the HRP-2 robot which takes into account the linear and angular
moments during the motion. In their work, the robot was able to walk and kick without
losing balance.
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2.3 Conclusions on motion representation

Human movement is locally observed while humanoid movement is globally generated.
There are differences in their models which must be addressed before captured human
motion can be used to generate humanoid movement. Human bodies are compliant sys-
tems which adapt easily, while robots are rigid systems which cannot easily adapt beyond
what they’ve been programmed to do. There are many different ways of interpreting the
complexities of human motion and adapting robotics techniques and models to human
models so human motion can be used in robotics applications.

The following chapter will focus on the problem of motion transfer from human beings
to robots and the specific issues which arise from this conversion.
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Chapter 3

Challenges in imitation

Due to structural differences between human beings and robots, human motion cannot be
directly transferred to the robot without choosing beforehand which aspects of the mo-
tion are worth transferring. Unfortunately, as resembling to human beings as they might
be, even the most advanced humanoid robots cannot move completely like a human being.

When the robot motion is generated by pure programming, the limitations of the robot
are considered beforehand. When the robot has to learn how to move by itself, it is intrin-
sically constrained by its limitations. But in imitation, the motions which can actually
be performed by the robot are limited by differences to its human counterpart, such as
the number of degrees of freedom, link lengths, motor torques, compliance, etc.

This chapter points out the main differences between human and humanoid systems and
reviews each challenge in implementing imitation and the approaches found in the liter-
ature to deal with each one of them.

3.1 Human-humanoid differences

Humanoid robots interact with their environment through their physical bodies. Hu-
manoid bodies are built to reflect the human body with different degrees of fidelity ac-
cording to the intent of the robot. Some only reproduce the torso and arms, others only
the legs, others only an arm, a hand, etc. Nevertheless, even robots which try to repro-
duce the whole human body inevitably have kinematic and dynamic differences from the
human body they are trying to represent, not to mention differences in actuation systems
and compliance.
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3.1.1 Kinematic differences

The number of links and joints is the first main difference. Even the most elaborate
humanoid robots have less degrees of freedom (NAO : 25, Asimo: 34, HRP-4C: 42) than
the human body. This considerably limits the redundancy of the robot in relation to the
human body. There are also differences in the joint ranges, velocities and accelerations.
While performing imitation, these physical differences have to be taken into account when
mapping the registered human movements to the robot. Geometrical differences such as
link lengths and number of degrees of freedom must be properly mapped to the robot
morphology in question.

Riley et al. [15] scaled the captured motion in joint space (direct kinematics) in order
to fit the joint ranges of the robot. The scaling was performed globally, which means
that the motions were kept large and didn’t preserve nuances of the movement. This
was addressed by Pollard et al. [27], who limited the captured human motion to a range
achievable by the robot by locally scaling angles and velocities in order to preserve as
much as possible local variations in the motion imitated by the Sarcos robot.

Although in [27] they initially scaled each DOF separately, in a following work [28] each
joint was scaled as a whole (all DOF in a joint scaled together) in order to achieve move-
ments which are more consistent with reality. In this follow-up work they also addressed
the issue of the robot overall configuration. This is an issue due to the different propor-
tions between the human being and the robot. They inserted a term in the optimization
which maintains the relative positions between certain key points on the body. Finally,
they added an exponential penalty to their formula in order to keep the joints away from
their limits. Finally, Nakaoka et al. [24] extended Pollard’s scaling method to include
also accelerations by adding a term to the equation.

3.1.2 Dynamic differences

As for dynamics, the nature of the structure, such as material properties and mass dis-
tribution affect the way the robot moves in relation to its human counterpart. Human
beings and humanoid robots differ in their actuation systems and thus in their reachable
torques; even the most powerful motors still cannot reach the limits of human motion
both in precision and force [24]. Some authors take this difference into account [29] and
generate trajectories by optimization while taking into account not only the joint posi-
tion, velocity and acceleration limits but also torque limits.

Dynamic differences also give rise to a problem in maintaining balance. This will be
addressed in Section 3.2.3.

18



Chapter 3. Challenges in imitation 3.2. Humanoid constraints

3.2 Humanoid constraints

Some issues arise directly from the design of the humanoid robot’s structure. Singulari-
ties, self-collisions (interpenetration), balance and time to perform imitation.

3.2.1 Singularities

Singularities in the serial kinematic chain occur when one or more degrees of freedom
are lost. This is reflected in a loss of rank of the Jacobian matrix. The most common
singularity in humanoid robots is called the gimbal-lock, and it happens when the arm
and forearm are aligned and their rotations coincide. In [27], the gimbal-lock was avoided
by constraining some degrees of freedom when the robot is moving near the singularity.

3.2.2 Interpenetration

Due to differences between human and humanoid bodies, a certain pose which is achiev-
able by the human might not be possible with the robot, not because of joint ranges but
because of differences in the body geometry which might make the robot hit itself when
the human does not. This is called the interpenetration or self-collision problem.

When performing optimization of a trajectory as a whole, self-collision can be avoided
by adding constraints to the problem. For example, in [28] and [30], the body parts were
approximated with spheres and cylinders which cannot intersect as seen in Figure 3.1.

Figure 3.1: Interpenetration avoidance by approximating the body with spheres and cylinders.
Adapted from [28].

In [29], interpenetration is avoided using the method in [31], which can be used for any
shape, even if it isn’t strictly convex, which yields better results than circle/sphere ap-
proximations that might exaggerate the shapes and over-constrain the movement.
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None of the reviewed approaches which dealt with interpenetration during imitation were
performed in real-time, which suggests that a more time-efficient self-collision avoidance
must be developed.

Related to the interpenetration problem is the problem of collision with the ground.
When changing support, humanoids must be aware of where the ground is located so
they don’t interact with it in undesired ways, such as kicking it by mistake.

3.2.3 Balance

Kinematics retargetting is enough to perform imitation in very slow velocities (qua-
sistatic). For most computer animation purposes, usually kinematics suffices, since the
characters do not need to interact with real-world physics. Yet, some researchers in an-
imation added dynamics to their models in order to increase realism [17]. In robotics,
dynamics becomes very important when moving in higher velocities, because inertial
forces come into play as the robot body masses and achievable accelerations are different
from those of the human. Different dynamics mean that the robot might need to perform
slightly different motions than the human, when it comes down to joint angles, in order
to keep balance or to faithfully perform a given task.

Methods based on directly mapping each individual joint (direct kinematics) [27, 15] do
not take balance into account and put the robot in risk of falling. Indeed, these experi-
ments either focus on the robot upper body or perform whole body imitation but have
the robot fixed to some structure so it does not need to stand its own weight.

Some works focus on keeping static balance by maintaining the projection of the CoM
within the support polygon. Koenemann et.al. [32] were able to imitate human motions
with the NAO robot online while keeping static balance by solving inverse kinematics for
the legs.

Vukubratovic [33] introduced the concept of a zero-moment-point (ZMP) in 1972. This
point is defined as the point on the ground about which there is no momentum around
the horizontal axes. For balanced motions, the ZMP coincides with the center of pres-
sure (CoP) under the feet [34]. During quasistatic movements, the ZMP is equivalent
to the projection of the center of mass (CoM ) on the ground. Balance is maintained as
long as the ZMP is located within the convex hull delimited by all feet on the ground.
Conversely, during movements with high accelerations, the projection of the CoM might
come out of the support area while the ZMP can remain there, ensuring stability. This
method works best on flat horizontal grounds, not handling well uneven terrain [2].

Dasgupta et al. [35] used human motion together with the ZMP concept in order to
generate a trajectory in which the robot is balanced (Figure 3.2). In [36], a more real-
istic trajectory for the ZMP was generated making use of an approximated human model.
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Figure 3.2: ZMP trajectory from modified human motion. Adapted from [35].

Nakaoka et al. [24] pointed out that leg motion in many humanoid robots is too limited
in order to properly imitate human motion. Some limitations include the lack of toes
and the impossibility of crossing the legs. Thus, they use motion primitives for the legs
and inverse kinematics for the arms. This allows for easier computation of balance since
the legs can only assume three different patterns. The balance is ensured by moving the
waist in order to guarantee that the ZMP is within the robot soles.

3.2.4 Time constraint

Imitation can be performed either offline, online or in real-time. Offline imitation implies
that the human motion was captured, processed and afterwards sent to the robot. On-
line imitation refers to when this process is realized at each time sample. And finally,
real-time is an online imitation where time is a hard constraint, which means that the
delay between motion capture and generation has to be kept to a minimum.

Real-time imitation is necessary for interactive applications or teleoperation. For that, all
the problems mentioned above must be taken into account in real-time, thus it is imper-
ative to develop quick algorithms. To this end, methods which require the optimization
of the trajectory as a whole [27, 24, 37] cannot be used in real-time.

Riley et al. [38] divided the inverse-kinematics computation into 6 hierarchical chains
to speed up computation. The solution takes advantage of the kinematic dependency
between body parts to solve the problem numerically. They were able to perform whole
body real-time imitation, but the robot was not standing its own weight and thus didn’t
need to keep balance.
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Demicran et al. [39] implemented an algorithm which finds the desired torques directly
from the task space variables, thus eliminating the need for the calculation of inverse
kinematics and allowing for real-time imitation.

In [30], it was suggested that by parametrizing the motion with B-splines, the convergence
speed of the trajectory calculation could be increased. Montecillo et al. [13] sped-up the
retargeting process by developing a ”Humanoid normalized model” which can be retar-
geted online with the use of Kalman filters.

In [32], online imitation was achieved by only taking a few points from the human mo-
tion and interpolating trajectories between them. This results in a fluid motion but with
visible delay and doesn’t retain the nuances of the human motion.

3.3 Summary of the literature background

Chapters 2 and 3 introduced the theoretical background referring to the use of human
motion in controlling humanoid robots. Several methods have been introduced and im-
plemented by researchers. A summary of the most relevant contributions to the topic
is found on Table 3.1. Although many problems were addressed, many remain barely
touched, such as slippage avoidance and change of support. It is sometimes unclear
which problems were addressed on each paper and how; in this case, the mention ”NA”
(not addressed) is reported on the table.

We conclude that most works were done offline and several considered only the upper
body, which only requires kinematics. No work focused on real-time imitation tried to
solve the interpenetration problem. In the cases where dynamics were considered, the
ZMP criterion is widely applied for balance.

22



Chapter 3. Challenges in imitation 3.3. Summary of the literature background

T
a
b
le

3
.1
:

C
om

p
ar

is
on

of
d

iff
er

en
t

ap
p

ro
ac

h
es

to
im

it
at

io
n

P
a
p
e
r

M
o
ti
o
n

c
a
p
-

tu
re

T
im

e
B
o
d
y

p
a
rt
s

P
h
y
si
c
a
l

li
m
it
s

S
in
g
u
la
ri
ti
e
s

In
te
rp

e
n
e
tr
a
ti
o
n

B
a
la
n
c
e

V
a
li
d
a
ti
o
n

D
as

gu
p

ta
et

a
l.

19
99

[3
5]

M
ar

ke
r-

b
as

ed
O

ffl
in

e
W

h
o
le

b
o
d

y
N

o
N

A
N

o
Z

M
P

S
im

u
la

to
r

B
il

la
rd

et
a
l.

20
01

[4
0]

M
ar

ke
r-

b
as

ed
O

ffl
in

e
U

p
p

er
b

o
d

y
N

o
N

o
N

o
N

o
S

im
u

la
to

r

P
ol

la
rd

et
a
l.

20
02

[2
7]

M
ar

ke
r-

b
as

ed
O

ffl
in

e
U

p
p

er
b

o
d

y
A

n
g
le

s
a
n

d
ve

lo
ci

ti
es

Y
es

N
o

N
o

R
o
b

o
t

R
il

ey
et

a
l.

20
03

[3
8]

C
ol

or
-t

ra
ck

in
g

R
ea

l-
ti

m
e

W
h

o
le

b
o
d

y
N

A
N

A
N

o
N

o
R

o
b

o
t

S
af

an
ov

a
et

a
l.

20
03

[2
8]

M
ar

ke
r-

b
as

ed
O

ffl
in

e
U

p
p

er
b

o
d

y
A

n
g
le

s
a
n

d
ve

lo
ci

ti
es

Y
es

Y
es

N
o

R
o
b

o
t

N
ak

su
k

et
a
l.

20
05

[4
1]

M
ar

ke
r-

b
as

ed
O

ffl
in

e
W

h
o
le

b
o
d

y
N

A
Y

es
N

o
Z

M
P

S
im

u
la

to
r

N
ak

ao
ka

et
a
l.

20
03

,
20

06
[2

4,
10

]

M
ar

ke
r-

b
as

ed
O

ffl
in

e
W

h
o
le

b
o
d

y
A

n
g
le

s,
ve

lo
ci

ti
es

,
a
cc

el
er

a
ti

o
n

s

Y
es

N
A

Z
M

P
R

o
b

o
t

R
u

ch
an

u
ru

ck
s

et
a
l.

20
06

[3
0]

M
ar

ke
r-

b
as

ed
O

ffl
in

e
W

h
o
le

b
o
d

y
A

n
g
le

s,
ve

lo
ci

ti
es

,
a
cc

el
er

a
ti

o
n

s

N
A

Y
es

N
o

R
o
b

o
t

D
em

ir
ca

n
et

a
l.

20
08

[3
9]

M
ar

ke
r-

b
as

ed
R

ea
l-

ti
m

e
U

p
p

er
b

o
d

y
D

O
F

N
A

N
o

N
o

S
im

u
la

to
r

D
o
et

a
l.

20
08

[8
]

M
ar

ke
r-

b
as

ed
an

d
m

ar
ke

rl
es

s
O

n
li

n
e

U
p

p
er

b
o
d

y
A

n
g
le

s
a
n

d
ve

lo
ci

ti
es

Y
es

N
o

N
o

R
o
b

o
t

S
u

le
im

an
et

a
l.

20
08

[2
9]

M
ar

ke
r-

b
as

ed
O

ffl
in

e
U

p
p

er
b

o
d

y
A

n
g
le

s,
ve

lo
ci

ti
es

,
to

rq
u

es

N
A

Y
es

N
o

S
im

u
la

to
r

D
ar

iu
sh

et
a
l.

20
08

[2
3]

M
ar

ke
rl

es
s

O
n

li
n

e
U

p
p

er
b

o
d

y
A

n
g
le

s
a
n

d
ve

lo
ci

ti
es

Y
es

Y
es

Z
M

P
R

o
b

o
t

K
im

et
a
l.

20
09

[3
6]

M
ar

ke
r-

b
as

ed
O

ffl
in

e
W

h
o
le

b
o
d

y
A

n
g
le

s
a
n

d
ve

lo
ci

ti
es

N
A

N
A

Z
M

P
R

o
b

o
t

M
on

te
ci

ll
o

et
a
l.

20
10

[1
3]

M
ar

ke
r-

b
as

ed
R

ea
l-

ti
m

e
W

h
o
le

b
o
d

y
A

n
g
le

s
a
n

d
ve

lo
ci

ti
es

N
A

N
o

Z
M

P
R

o
b

o
t

K
o
en

em
an

n
et

a
l.

20
12

[3
2]

E
m

b
ed

d
ed

O
n

li
n

e
W

h
o
le

b
o
d

y
A

n
g
le

s
a
n

d
ve

lo
ci

ti
es

N
A

N
o

S
ta

ti
c

R
o
b

o
t

23



24



Chapter 4

Task Specification

The overall literature on human motion imitation by humanoid robots was covered in
the previous chapters. This chapter will describe in detail the the approach taken in this
research.

Much effort has been put into both kinematic and dynamics imitation. While kinematic
approaches are suitable for quasi-static motions, dynamic approaches allow for faster imi-
tation, as they take momentum into account. As well explored as it may seem, kinematic
imitation in real time is yet to be considered a closed topic though. Although many
works have shown good results offline, real-time approaches still lack in the quality of
whole-body imitation, successfully keeping static balance, changing support and meeting
time constraints. The present research aims to contribute to the research in real-time
whole-body kinematic imitation, providing a general framework which can be used with
any humanoid robot and motion capture system.

As mentioned in the previous chapter, imitation involves the reproduction of several as-
pects of human motion by humanoid robots. When using inverse kinematics to reproduce
various aspects at once, the concept of Task specification (or Task classification, or Task
prioritization) comes in handy. Task specification allows the use of the robot’s redun-
dancy to perform several tasks; when these tasks are not compatible, that is, the robot
cannot satisfy all of them at once, the tasks of higher priority are solved to the detriment
of the lower priority ones [21, 42].

4.1 Types of tasks

A task refers to any geometric goals which must be achieved by the robot. For example,
reaching a certain point in the world frame, reaching a particular joint angle, avoiding an
obstacle, placing the center of mass in a specific location and so on. Another way of seeing
them is as constraints which limit the robot’s allowed motion: the robot can place itself in
any way as long as it doesn’t disturb the task. The tasks dealt with in this research are ei-
ther equality tasks or optimization tasks. Inequality tasks, which maintain a value within
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4.1. Types of tasks Chapter 4. Task Specification

a desired range, have also been developed [42], but won’t be implemented in this research.

Several tasks of each type will be performed. Each type will be described separately
below. The mathematical description will be given as well as examples of when that type
of task is useful. The way of arranging these tasks according to their priorities will be
detailed. And finally, the tasks used in this work will be defined.

4.1.1 Equality tasks

This type of task is the most commonly found when dealing with inverse kinematics. It
consists of tracking values which can be described in function of the robot’s joints. For
example, the position and orientation of an end-effector, the position of the center of
mass, and many other key points in the robot’s body can be described in function of the
joint configuration. Here, the term direct geometric model (DGM ) will be used to refer
to the description of any vector X (task vector) in function of the joint vector q, thus:

X = DGM(q) (4.1)

While the DGM gives a geometric relation between the task vector and the joint vector,
the model which relates their velocities is called the Direct Kinematic Model (DKM ).
In this work we’ll be dealing with discretized motion, so rather than velocity q̇, we’ll be
talking about position difference ∆q (for most purposes they’re interchangeable though).
The DKM is given as follows, where ∆q is the vector of joint changes and ∆X is the
vector of the corresponding change in generalized task coordinates. The matrix J(q) is
called the Jacobian and relates the changes in velocity in task space and joint space.

∆X = DKM(∆q) (4.2a)

∆X = J∆q (4.2b)

J(q) =
∂X

∂q
(4.2c)

Having Xd as the desired task vector and Xc as the current one, the change in the robot’s
joint configuration ∆q needed to bring their difference to zero is given as:

∆q = J+(Xd −Xc) (4.3)

Where J+ is the generalized Moore-Penrose pseudo-inverse of the task’s Jacobian J(q).
When the Jacobian matrix is full-rank and square, that is, the number of DOF in the
task is equal to that of the robot and it is far from singularities, the inverse J−1 can
be taken. However, the pseudo-inverse is needed when the inverse of a Jacobian ma-
trix is not unique. For redundant robots, such as humanoids, the Jacobian is not easily
invertible since it usually has more columns (joint space) than rows (task space). The
pseudo-inverse finds a solution based on least squares which finds the minimum ∆q which
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satisfies the task. The validity of the pseudo inverse is only true for small intervals, thus
it is necessary to break down the final goal into shorter steps.

The pseudo-inverse can be calculated by singular value decomposition (SVD) as follows,
where Σ is a diagonal matrix. This simplifies the calculation, since the pseudo-inverse of
a diagonal matrix is found by taking the reciprocal of each of its non-zero elements.

J = UΣVt (4.4a)

J+ = VΣ+Ut (4.4b)

The pseudo-inverse can also be easily calculated for matrices with linearly independent
columns (J+

L , called the left inverse) or linearly independent rows (J+
R, called the right

inverse), as the case might be.

J+
L = (JtJ)−1Jt (4.5a)

J+
R = Jt(JJt)−1 (4.5b)

When applied to humanoid imitation of human motions, this type of task can be used,
for example, to track end-effector position and orientation. It is also possible to set the
robot’s CoM to be projected onto a specific point on the ground in order to keep balance.
In fact, the tracking of points on the robot is not limited to the end-effector. Not only
the end-effector of the arm (usually the hand) can be tracked, but also the elbow or the
shoulder can be placed at a specific pose in Cartesian.

4.1.2 Optimization tasks

Some tasks, rather than prescribing a specific point to be reached, require the minimiza-
tion or maximization of a value. As long as the function is described only in function of
the robot’s joints, it can be made into an optimization task. These tasks are described
by a Z vector consisting of the weighted gradient of a function.

Zj = κj∇fj(q) (4.6)

Here, fj(q) is the function to be optimized and κj is a weight whose value is chosen
according to task j’s priority. The value of κj is positive for maximization tasks and
negative for minimization ones.

This type of task is very useful, for example, for minimizing the difference between cap-
tured human joint angles and the robot’s angles. It is also commonly used in industrial
robots to maximize the distance from the joint angles and the joint limits. In summary,
anything which can be made into an equality task can be made into an optimization.
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Unlike equality tasks, optimization tasks cannot be hard constraints, since the optimal
value might not be reached.

4.2 Prioritization

If a task doesn’t make use of all of the robot’s DOF, the extra DOF can be used to
solve other tasks. Task prioritization arranges these tasks in a hierarchy so that lower
priority tasks do not disturb tasks above them. Clearly, the robot has to be redundant
with respect to each individual task (have more DOF than needed) and for all tasks to
have a chance of being performed, the sum of the DOF they require must be less or equal
the robot’s DOF.

In fact, humanoid robots are usually redundant with respect to the tasks they are asked
to perform. As seen in Figure 4.1, if the task is to place three end-effectors in space,
there is an infinite number of joint configurations which can achieve this goal. The space
where motions can be performed without perturbing a task is called the task’s null space.
In Figure 4.1, any movement done without moving the three end-effectors is within this
task’s null-space.

Figure 4.1: Humanoid redundancy. Adapted from [2].

4.2.1 Null space projector

The null space is directly connected to the task’s Jacobian and is commonly referred to
as the Jacobian’s null space. The act of performing a task 2 within task 1’s null space
is called projecting the task vector Z2 into Jacobian J1’s null space [43]. The projector
Pj(q) of the Jacobian Jj(q) is defined as:

Pj = I− J+
j Jj (4.7)
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Here, I is the identity matrix. The priority of tasks is given so task j is of higher priority
than task j + 1. To use the projector in the solution of inverse kinematics, it suffices
to add it multiplied by the joint velocity vector to be projected (Z2) to the original IK
(∆q = J+∆X). In the case of two tasks we have the following solution for the IK :

∆q = J+
1 ∆X1 + P1Z2 (4.8)

The projector successfully keeps task 2 (described by Z2) from interfering in task 1. This
can be checked by reversing task 1, that is, multiplying J1 by the obtained joint vector
∆q should result in ∆X1.

J1∆q = J1J
+
1 ∆X1 + J1P1Z2 (4.9a)

J1∆q = ∆X1 + J1(I− J+
1 J1)Z2 (4.9b)

J1∆q = ∆X1 + J1Z2 − J1J
+
1 J1Z2 (4.9c)

J1∆q = ∆X1 + J1Z2 − J1Z2 (4.9d)

J1∆q = ∆X1 (4.9e)

In case task 2 is described by a Jacobian (equality task), we substitute Z2 = ∆q2 =
J+
2 ∆X2:

∆q = J+
1 ∆X1 + P1J

+
2 ∆X2 (4.10)

For optimization tasks, Z2 is the same as described in section 4.1.2:

∆q = J+
1 ∆X1 + P1κ2∇f2(q) (4.11)

The null space projector can be used in nests in order to insert any number of tasks into
the ones before, as long as tasks which will be above others in priority are described by
Jacobians, because they must have a null space. This means that optimization tasks
cannot make use of the projector to be higher than others, although, as seen above, they
can be in the lowest priority. For 3 strict tasks:

∆q = J+
1 ∆X1 + P1(J

+
2 ∆X2 + P2J

+
3 ∆X3) (4.12)

This time however, upon checking the interference between tasks, an unfortunate conse-
quence is discovered. Let’s first check the completion of task 1, as done above. Recall
that J1P1Z = 0 for any Z, as shown in equation 4.9.

J1∆q = J1J
+
1 ∆X1 + J1P1J

+
2 ∆X2 + J1P1P2J

+
3 ∆X3 (4.13a)

J1∆q = ∆X1 (4.13b)
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It is confirmed that task 3 does not interfere with task 1. However, when checking for task
2, we notice that the introduction of task 3 might influence its completion. Therefore, a
method which insures the hierarchy of all tasks is needed.

J2∆q = J2J
+
1 ∆X1 + J2P1J

+
2 ∆X2 + J2P1P2J

+
3 ∆X3 (4.14a)

J2∆q 6= ∆X2 (4.14b)

4.2.2 Ensuring priority order

As seen above, when adding more than 2 tasks, simply nesting null space projectors is
enough to insure the 1st task will not be perturbed, but nothing can be guaranteed for
the 2nd task onwards. Therefore, a way of ensuring each new task is projected into the
null space common to all previous tasks is necessary.

Baerlocher et al. [44] proposed a change in the way the null space projector is used in
order to more efficiently handle conflicting tasks and ensure the hierarchy of priorities.
For two tasks, equation 4.10 is adapted in 2 steps. First, the influence of the 1st task on
the 2nd is subtracted (−J2∆q1):

∆q = J+
1 ∆X1 + P1J

+
2 (∆X2 − J2J

+
1 ∆X1) (4.15)

Then the 2nd task’s Jacobian itself is limited to stay within the null space of the 1st
task: J+

2 → (J2P1)
+. Once this is done, the pre-multiplication by P1 is not necessary

any longer. Hence, the completely adapted equation becomes:

∆q = J+
1 ∆X1 + (J2P1)

+(∆X2 − J2J
+
1 ∆X1) (4.16)

This new formulation can be used for any number of tasks while ensuring that the lower
priority tasks don’t perturb the ones above them. The iterative process considering N
tasks arranged by their respective priorities is the following, for j = 1..N .

{
∆q0 = 0
∆qj+1 = ∆qj + (Jj+1P

a
j )

+(∆Xj+1 − Jj+1∆qj)
(4.17)

Here, Pa
j is the projector of Jacobian Jaj , which is called the augmented Jacobian. It

consists of piling up all the Jacobians up to task j. The augmented Jacobian takes all
higher priority tasks into account, making sure that they won’t be disturbed by the task
being introduced.

Jaj =

 J1
...

Jj

 (4.18)
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4.2.3 Including optimization tasks

After N tasks with rigid constraints have been arranged, we can introduceM optimization
constraints and get the following equation. The priority of each optimization task is given
by the magnitude of its weight κj, recalling that κj is positive for maximization tasks
and negative for minimization ones.

∆q = ∆qN + Pa
N

M∑
j=1

κj∇fj(q) (4.19)

We can add as many tasks as strict or optimization constraints as wished, checking be-
forehand that the redundancy order of the considered robot with respect to the considered
tasks descriptions is sufficient.

4.3 Tasks in imitation

When imitating human motion, it is necessary to first clarify exactly which aspects of
the motion are to be copied. Among these, it is also necessary to specify which ones are
the most important. Is tracking the hand position in the world frame more important
than tracking the elbow angle? Does the robot need to keep balance or is it attached to
some structure? The answers to these questions will influence in the quantity, type and
priority of the tasks chosen.

In this work, four general tasks will be considered: end-effector tracking, joint tracking,
keeping balance and avoiding joint limits. Each task will be discussed individually.

4.3.1 Joint limits avoidance

It might seem counter-intuitive at first, but no matter what is the goal of the imitation,
staying away from joint limits should always be the task with the highest priority of all.
In fact, in any robotics application, avoiding joint limits is usually of the highest impor-
tance. That is because if the inverse kinematics’ solution is not within limits, that value
will not be physically feasible. If the resulting joint vector is limited after the solution
is found, the overall configuration is changed and nothing insures the new configuration
will comply with other tasks. Placing limit avoidance in the highest priority assures that
all other tasks will be physically achievable.

Staying away from the joint limits can be described as staying as close as possible to the
median value for the joint position. Thus, the task can be described as a minimization
between the current joint value qci and the median joint value qmedi . The function is given
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as:

flimits(q) =
n∑
i=1

(
qci − qmedi

qmaxi − qmini

)2

(4.20)

Consequently, after differentiating the flimits(q) according to equation 4.6, each element
i of the task vector becomes:

Zlimits(i) = 2κlimits
qci − qmedi

(qmaxi − qmini )2
(4.21)

Although fit for many motions, it is not possible to place this as the highest priority
task using the prioritization method described, since it is an optimization task. Another
drawback is giving priority to the median position when in fact any position within the
range should be equally allowed.

A different way of dealing with joint limits is proposed by Baerlocher [44]. In this method,
if the pseudo-inverse finds a solution which doesn’t fit into joint limits, the joints in
question are fixed at their limit value and the IK is resolved using only the other joints.
After the IK has been numerically solved, for the surpassing joints the following two
measures are taken:

• Fix those joints’ values to the closest limits

• Zero the columns on all Jacobians which correspond to those joints

The IK is then solved again. This loop is repeated as many times as needed until a
solution is found where all joints fit within their limits. This method successfully avoids
joint limits, but can be too constraining as it might quickly fix many joints and reduce the
available redundancy for other tasks. When used in conjunction with the minimization
task above however, fewer joints can be fixed and leave more room for other tasks while
insuring the joint limits will be avoided.

4.3.2 Balance

Two types of balance can be kept making use of inverse kinematics: static balance track-
ing the projection of the CoM or dynamic balance tracking the ZMP. For either point
being tracked, the robot will remain balanced as long as the point falls within the convex
hull delimited by the support feet.

It is possible to use equality tasks to place these points on a specific position on the floor.
The desired position Xd

CoM has the two horizontal coordinates [x, y]. To bring the current
projection Xc

CoM to that desired point, the robot will need to move its joints by ∆qCoM :

∆qCoM = J+
CoM(Xd

CoM −Xc
CoM) (4.22)
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We can extend the static criterion to ZMP criterion by substituting the task space vector
for Xd

ZMP , where the ZMP ’s absolute position in the horizontal plane can be obtained
from the absolute position of the CoM and its derivatives.

{
xcZMP = xcCoM −

zcCoM−zcZMP

g+z̈cCoM
ẍcCoM

ycZMP = ycCoM −
zcCoM−zcZMP

g+z̈cCoM
ÿcCoM

(4.23)

Where zcZMP is the level of the floor and g = −9.81 m/s2 the gravity acceleration.

Fixing these points onto a specific position on the floor is overconstraining and leaves
less free DOF for the other tasks. However, this precise control over the point position-
ing is advantageous for choosing safer positions far from the foot’s edges and for avoiding
points too far from the ankle which would require too much torque to hold the whole body.

The balance task can also be described as an optimization task minimizing the distance
from the center of the support. This kind of task does not have a high priority though.
As an inequality task, the points could be directed to any point within the support area
instead of a specific point.

4.3.3 End-effector tracking

The task vector ∆Xtracking is given by the difference between the desired and the current
poses of the end-effectors. Both positions and orientations can be considered. Considering
that there are 1..e end-effectors being tracked, we have:

∆Xtracking =


∆X1

∆X2
...

∆Xe

 (4.24)

The Jacobian Jtracking is found by concatenating the end-effector Jacobians for the current
configuration qc.

Jtracking =


J1(q

c)
J2(q

c)
...

Je(q
c)

 (4.25)

4.3.4 Joint trajectories tracking

Imitation based on direct kinematics consists of extracting angles from the human motion
which correspond to the robot’s DOF and sending this data directly to the robot. As
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explained on Section 2.2.1, this approach is limited and does not insure balance. Never-
theless, keeping the robot joint values as close as possible to that of the actor’s improves
the quality of the imitation, making the robot move in a similar manner to the human.
Thus, it is interesting to minimize the differences in joint angles between the human actor
and the humanoid robot as an optimization constraint.

fjoints(q) =
k∑
i=1

(qci − qdi )2 (4.26)

where qd is the human generalized joint vector matching the dimension and the joints of
the robot’s joints and qc their current value. Each angle qi denotes the ith component of
vector q. Note that only k < n joints can be tracked, as not always all the robot’s DOF
can be correlated to an angle on the human, depending on the robot’s kinematics and
on the motion capture system. Differentiating, each element of the optimization vector
becomes:

Zjoint[i] = 2κjoint(q
c
i − qdi ) (4.27)

4.4 Summary

This chapter described the general formulation for inverse kinematics with task specifica-
tion. Four tasks for human motion imitation by humanoid robots were explained, these
being: avoiding joint limits, keeping balance, tracking end-effectors and tracking joint
values. These tasks can be described either as equality tasks or optimization tasks. The
priority of tasks is insured by projecting lower priority tasks into high priority tasks’ null
spaces with the help of the augmented Jacobian. To improve the convergence of the limit
avoidance task, a clamping loop can be added.
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Imitation in single support

The first stage of this research was to implement motion imitation while on single sup-
port, as shown on Figure 5.1. This implementation helps validate the method of task
specification, as well as the processing of human data. Single support was chosen over
double support because the NAO robot never loses balance while moving arms only,
therefore it wouldn’t be enough to check whether the balance constraints work well.

In this chapter, the experimental tools used will be introduced and the implementation
of single support imitation will be detailed. In the results section, various aspects of the
imitation will be discussed.

Figure 5.1: Example of poses achievable with online imitation in single support.
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5.1 Experimental tools

5.1.1 Robotic platform

The NAO robot is a 25 DOF humanoid robot produced by Aldebaran Robotics [45],
shown in Figure 5.2. It is equipped with a series of sensors: microphone, cameras, sonars,
infra-red, gyroscope, accelerometer, rotary encoders in all its motors, force sensors on its
feet and contact sensors on various body parts.

Figure 5.2: NAO humanoid robot. Adapted from [46].

The robot’s embedded software, NAOqi, provides a framework so the robot can be pro-
grammed in various operating systems, and in various languages, including C++, Python
and Matlab. The manufacturer also provides a software with which the robot can be
programmed through a simple graphic interface, called Coreographe. The dynamics sim-
ulator Webots, powered by Cyberbotics, can be used to simulate the robot’s behaviour in
real physics.

For this research, a program was written in C++ and compiled with CMake, a cross-
platform build system, to make use of NAOqi libraries. The program runs in a computer
which communicates with the robot via wi-fi.

5.1.2 Motion capture systems

Two different motion capture systems were used in this project, one is marker-based and
the other is markerless.
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5.1.2.1 Markerless

The markerless motion capture system used in this research is the Microsoft Kinect [16].
As shown in Figure 5.3, this system comes equipped with an RGB camera, an IR depth
sensor and a microphone array. In order to detect the human actor, the camera and
the depth sensor are used in conjunction to extract position and orientation information
about the human body.

Figure 5.3: Sensors included in the Microsoft Kinect. Adapted from [16].

To detect the human skeleton, the OpenNI [47] development framework was used. This
open source framework offers libraries which facilitate the extraction of meaningful data
from natural interaction devices, such as the Kinect. Among these libraries, the NiTE
middleware was used to track the human skeleton. This library returns 15 joint frames
for the human body, including position and orientation for each of them, as shown in
Figure 5.4.

Figure 5.4: Skeleton tracking with NITE.
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The NiTE middleware offers the source code for several sample programs in C++. The
sample Players was modified to extract the skeleton data and translate it into the data
needed to solve the IK.

5.1.2.2 Marker-based

The marker-based motion capture system used in this research is the ARTtrack system
based on 8 infra-red cameras and passive retro-reflective markers [48]. The 3D position
of each marker is calculated with the principles of stereovision, as shown in Figure 5.5.

Figure 5.5: Principle of optical tracking in the ARTtrack system. Adapted from [48].

A different rigid arrangement of 4 markers is attached to each tracked body part, as
shown on Figure 5.6. The software can tell apart each rigid part and return the position
and orientation (6 DOF) of each body segment and joint for each time instant in 60Hz.

This system is different from traditional marker-based systems since the markers are ar-
ranged in rigid bodies instead of being attached to the human body directly. This means
that the ISB recommendations do not apply to this system and a way of extracting joint
frames from the captured data must be proposed if the approximation provided by ATR-
track is not sufficient. During this research, the joint positions provided by the software
were used directly.

During this research, it wasn’t possible to access the ARTtrack system online, therefore,
this system was only used for offline validation.
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Figure 5.6: ARTtrack ’s markers placed on the human.

5.1.3 Other software

Besides the previously mentioned software, the numerical computing environment Matlab
[49] was used to model the robot and analyse results. Also, the Qt [50] framework was
used to create a graphical user interface (GUI ) to aid in the development and to facilitate
access to the program developed (Appendix A). All the implementation was done under
the Linux operating system.

5.2 Implementation

The implementation began by modelling the robot’s kinematics in order to obtain a re-
lation between its joint and task spaces. Once the robot’s geometry was understood, the
captured human data was scaled to the robot’s size, and its desired features tracked with
task specification IK.

5.2.1 Robot model

5.2.1.1 Geometric and kinematic models

During the course of this research, two robots were used: one NAO H25 V3.3 with a head
V4.0 and one fully V4.0. While these robots have an identical kinematic description for
their effectors, their masses greatly differ. NAO H25 possesses 25 DOF in total, however,
for the purposes of this research, the hands (open/close) will be ignored. Thus, we will
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be controlling 23 DOF in total (vector q), arranged as in Fig. 5.7.

q =

 q1
...
q23

 (5.1)

Figure 5.7: NAO Robot’s DOF as arranged in the joint vector.

The robot’s geometric model was calculated using Modified Denavit-Hartenberg (M-
DH ) parameters according to the guidelines in [21]. The most relevant aspects of this
parametrization for the current work are here described. For a tree structure without
prismatic joints where each link ` has an antecedent link a and a subsequent link s, the
frames are assigned as:

• Z` axis: joint `’s rotational axis

• X` axis: orthogonal to Z` and Zs

• Y` axis: Z` ×X`
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Since this robot is a tree structure, some links have more than one subsequent link. In
addition, it might be convenient to include frames in the model which are not necessarily
defined according to the previous rules. In these cases, an axis Us can be introduced.
This axis will play the role which X` was previously playing, while we are free to set X`

as wished. Axis Us is indexed according to the subsequent link because several of such
axes might be associated to one Z`.

• If X` is not defined as above, define a Us axis orthogonal to Z` and Zs.

After all frames have been defined, the M-DH parameters describing their relation can
be taken. Each parameter describes either an angle or a distance between 2 axes about
another axis. In total there are 6 parameters used to define the relation between 2 frames,
given as follows.

• α`: angle from Za to Z` about Xa

• d`: distance from Za to Z` along Xa

• θ`: angle from Xa to X` about Z`

• r`: distance from Xa to X` along Z`

• γ`: angle from X` to Us about Z`

• b`: distance from X` to Us along Z`

When the Us axis is not necessary, it is the same as to say that it is equal to X`, so the
parameters γ` and b` are both zero (so the relation between frames is fully described by 4
parameters). These parameters can then be used to get the homogeneous transformation
aT` from frame a to frame ` as follows. Note that for compactness, C represents cosine
and S represents sine:

aT` =


Cγ`Cθ` − Sγ`Cα`Sθ` −Cγ`Sθ` − Sγ`Cα`Cθ` Sγ`Sα` d`Cγ` + r`Sγ`Sα`

Sγ`Cθj + CγjCαjSθj −SγjSθj + CγjCαjCθj −CγjSαj djSγj − rjCγjSαj

SαjSθj SαjCθj Cαj rjCαj + bj
0 0 0 1

 (5.2)

The parameters used follow the nomenclature and values in the robot’s documentation
[45] and are seen in Figure 5.8. The resulting tree structure is detailed in Figure 5.9 and
the corresponding parameters are shown on Table 5.1. The X, Y, Z axes are coloured
according to the RGB convention and the U axes are shown in yellow. When the Z axis
(revolution axis) belongs to a DOF, it is represented with a thick cylinder. Although
there are 24 movable axes, frames 6 and 8 are coupled and controlled by the same motor,
so the robot has only 23 controllable DOF.

In this preliminary implementation, the robot is kept balanced on the right foot. There-
fore, it was modelled considering that the right foot is fixed to the floor, so frame 0 is
taken as its sole. Frames 1 to 6 describe the DOF of the right leg from RAnkleRoll to
RHipY awPitch. Frame 7 is fixed to its antecedent and corresponds to the torso described
in the documentation. The other chains are described succeeding frame 7 for convenience
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and simplicity, each one ending in its respective end-effector (LFoot, RHand, LHand,
Head). Note that the five fixed frames (0, 7, 14, 20, 27) are oriented the same way as in
the documentation, so they can also be used directly with functions in NAOqi such as
getCOM and getPosition.

Figure 5.8: Measures of NAO robot’s body.

As previously explained, the DGM gives the task-space poses according to the joint vari-
ables. The right foot is kept immobile on the floor at all times, thus it is taken as the
absolute frame of reference. It is also worth noting that here the head is not considered
as an end-effector. Thus, only 3 end-effectors are considered: the left ankle, the left hand
and the right hand.

Although the orientation of the end-effectors can be found, only their Cartesian positions
with respect to the right foot RFootPj (3 dimensions × 3 end-effectors = 9 DOF ) will be
tracked. This is because whole poses would take up to 6 × 3 = 18 DOF, leaving only 5
DOF for the other tasks, of which 2 belong to the head chain. Thus, from the DGM we
have:

RFootPLAnkle = DGM(q) (5.3a)
RFootPRHand = DGM(q) (5.3b)
RFootPLHand = DGM(q) (5.3c)
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Figure 5.9: NAO ’s kinematic chain based on the right foot, modelled with the M-DH param-
eters on Table 5.1.
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From the geometric model, the direct kinematic model is found by partial derivatives as
follows. The dimension of each Jacobian is [3× 23].

RFootJLAnkle =
∂RFootPLAnkle

∂q
(5.4a)

RFootJRHand =
∂RFootPRHand

∂q
(5.4b)

RFootJLHand =
∂RFootPLHand

∂q
(5.4c)

The modelling was implemented on Matlab, since this language allows for easier plotting
and checking the model. A script was developed where the user can input the M-DH
parameters and immediately get a plot like Figures 5.7 or 5.9, including fixed frames,
DOF s, lines connecting adjacent frames and, for the NAO robot, even its body parts. A
GUI where the user can change each DOF and see the resulting configuration was also
implemented on Matlab.

5.2.1.2 Masses

To keep static balance during imitation, it is necessary to track the CoM of the robot to
ensure it fulfils balance conditions. The CoM position is given as:

RFootPCoM(q) =

n∑̀
=1

RFootPCoM`
(q)m`

n∑
i=1

m`

(5.5)

Where n is the number of moving masses in the robot’s body. In this case, it is equal to
the number of DOF (n = 23), since each DOF moves a mass m` which must be taken
into account. The position of each mass w.r.t. the absolute frame is given as RFootPCoM`

.

The masses values and positions, as given by the documentation, are shown on Figure
5.10, where each mass point is represented by a yellow sphere centred at its position with
a radius proportional to its magnitude. The red cross represents the robot’s CoM and
the black cross its projection on the plane of the right foot’s sole.

The same way as for the end-effectors, the Jacobian of the CoM projection onto the floor
(x and y coordinates of the right foot’s frame) is found. Its dimension is [2× 23].

RFootJCoMxy =
∂RFootPCoMxy

∂q
(5.6)
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Figure 5.10: NAO robot’s mass distribution.

It’s desired that the CoM projection falls onto a specific point within the support area
where it is known that the robot keeps balance. Among all points within the convex hull
of the right footprint, the point immediately under the right ankle was chosen. That’s so
as to minimize the torque needed by the ankle to support the whole body’s weight.

Using the same Matlab script which plots the images, the DGM and DKM were cal-
culated symbolically and pasted directly into the C++ program so they can be quickly
accessed. Implementing the DKM for the end-effectors directly in C++ would be a
straight forward task using the explicit form of the Jacoban matrix. On the other hand,
implementing the Jacobians for the CoM wouldn’t be as simple. Thus, for uniformity,
all Jacobians were calculated by derivation with Matlab. It is possible that in a future
work all Jacobians can be implemented on C++.

5.2.1.3 Model accuracy

The robot’s software contains methods which return the pose of end-effectors and posi-
tion of the CoM in task space. There’s the option of having these values either returned
by the actuators themselves or by sensors. The values given by the actuators seem to
follow a geometric model according to the joint values set, while those returned by sensors
should represent values closer to reality, as they are not aware of the commands which
were sent to the actuators.
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Since calibration is not one of the goals of this research, divergences between actuator
and sensor values will not be addressed. It is important to keep in mind that they exist
though, and inaccuracies in the geometric description can be a big source of errors, possi-
bly causing loss of balance. What is being verified here is whether the model implemented
corresponds to the robot’s geometry and no offsets were ignored or angles misplaced. To
this end, the task space poses returned by the model above will be compared to those
returned by NAOqi ’s actuators. Since this value corresponds to the joint angle inputs,
the values should be the same.

The method getPosition was used to get the position of the end-effectors (LLeg : LFoot
(frame 14); LArm: LHand (frame 26); RArm: RHand (frame 20). Frame numbers refer
to Figure 5.9). The method getCOM was used to return the 3D coordinates of the robot’s
center of mass. All these values come expressed with respect to the torso frame, so these
values are transformed to the RFoot frame making use of the inverse transform returned
with the method getTransform for the right leg.

The robot starts from a pose balanced on the right foot. Then it performs 3 motions in
order: bend LKnee (green), stretch LElbow (blue), stretch RElbow (magenta). Several
points of this trajectory are taken as shown on Figure 5.11.

Figure 5.11: Comparison of the developed model and the values returned by the API for the
V3.3/V4.0 robot.

For both robots, the captured points didn’t coincide exactly with the model. Root mean
square (RMS ) errors are shown on Figure 5.12. For the V3.3/V4.0 robot, errors as high
as 0.3 mm were observed, while for the V4.0 robot the highest error was of 0.08 mm. For
both robots, the highest errors were for the Z axis.

Recalling that the same end-effector model was used for both robots and that the same

47



5.2. Implementation Chapter 5. Imitation in single support

(a) V3.3/V4.0 (b) V4.0

Figure 5.12: Root mean square error between the developed model and the robot’s API for
both robots.

movements were performed on both experiments, it is curious that the robot’s API re-
turns different values for each robot concerning LFoot, LHand and RHand. It would be
interesting to further check the sources of these errors and to use external sensors to
calibrate the robot. As of now, these errors are being considered acceptable.

5.2.2 Human motion

Using the Kinect sensor, the NiTE middleware returns a skeleton with 15 human joints
as shown on Figure 5.13. The data is quite noisy and highly affected by lighting con-
ditions. In particular, it was observed that the joint orientation is more prone to large
errors than its position. Thus, it was decided that the orientation information wouldn’t
be taken into account.

The ARTtrack system, on the other hand, returns 20 joint frames, including 2 toes, 2
wrists and a point between the hips. These points are seen on Figure 5.14. The returned
orientation for all frames is also very reliable. However, since the same implementation
is being used for all systems, the ARTtrack skeleton will be treated the same way as
the Kinect ’s, the extra frames and orientations ignored. The greatest difference is in the
quality of the data, since the marker-based system is less noisy, doesn’t have sudden limb
displacements and allows for a wider range of motions.

5.2.2.1 Scaling task space

In the previous chapter, it was mentioned that imitation based on inverse kinematics
is commonly used when the robot must reach the same point in task space as the hu-
man being. In our case however, the robot used is much shorter than the human and
thus wouldn’t be able to reach most of the human actor’s task space. Therefore, for the
purpose of this research, the task space is not treated as absolute but as relative to the
imitator’s size.
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Figure 5.13: Human joints captured with the Kinect sensor.

Figure 5.14: Human joints captured with the ARTtrack system.

For both capture systems, the data comes expressed with respect to an absolute frame
in space. The first step is thus to express all the data with respect to the right foot with
the orientation of our model. The imitation starts at the psi pose, where the human
is standing with both hands up as the letter Ψ. During this pose, the RFoot frame is
defined with the Z axis pointing upwards parallel to the legs, the Y axis towards the left
foot and the origin on RFoot. This is done once in the beginning and this transform is
used throughout the imitation, so if the human moves RFoot, the imitation is spoiled.
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In a previous work [51], the use of a scaling factor for each limb based on the ratio be-
tween the lengths of the kinematic chain of actor and imitator was proposed. This factor
was then multiplied by the captured human data to obtain the desired positions for the
robot. Since each limb was a simple serial chain, a proportional scaling factor could be
applied satisfactorily.

However, in the present work, the balance is being taken into account and thus the robot
has to be modelled as a whole, which gives rise to s tree-structure. In this case, keeping
the direction of the captured human data means that the robot’s end-effectors will fall
on the line which connects the tracked points to the origin on the right foot. This might
result in very different body configurations as shown on Figure 5.15.

Figure 5.15: Scaling human motion with a proportional scaling factor results in different poses.

In this work, a new scaling method is proposed which takes into account not only the
lengths of each of the segments but also each of their directions. This way, the captured
human motion is scaled segment by segment to the lengths of the robot lrobot` while keep-
ing the direction of that segment. The iterative process starts from the right ankle and
moves upwards towards each of the end-effectors.

Assuming that segment ` is the one which comes after joint `, the scaling is performed
in 3 steps:

• Human segment `’s direction is taken (vector normalization)

• The free vector is multiplied by the corresponding length on the robot lrobot`

• The scaled segment is placed on the chain after its antecedent Probot
a .
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In summary:

Probot
` =

Phuman
` −Phuman

a

‖Phuman
` −Phuman

a ‖
lrobot` + Probot

a (5.7)

A question arises as to how to scale the torso. Since the robot doesn’t have a spine, the
distances connecting shoulders and hips should remain constant. The shoulders cannot
be scaled directly from the hips because of the different torso proportions between the
human and the robot. It was chosen to scale a segment which goes from the point be-
tween the hips to the point between the shoulders, preserving symmetry. The skeleton
scaled by this method is seen on Figure 5.16.

Figure 5.16: Scaling human motion segment by segment.

5.2.2.2 Capturing joint space

In order to keep the robot’s joint space close to that of the human’s, it is necessary to
find the angles which correspond to the robot’s DOF in the human data.

Since we’re not relying on orientation information from the motion capture system, as
many angles as possible are extracted making use of position data only.

Elbow roll and knee pitch angles can be easily found making use of the dot product
between body segments. For example, the angle LElbowRoll can be found as the angle
between the left upper arm (defined as the segment from PLElbow to PLShoulder) and the
forearm (segment from PLElbow to PLHand, as shown on Fig. 5.17(a). The equation can
be seen below. The same is done for the right elbow and the two knees. For the knees,
the upper leg goes from the knee to the hip and the lower leg from the knee to the ankle.

LElbowRoll = acos
(PLShoulder −PLElbow) · (PLHand −PLElbow)

‖PLShoulder −PLElbow‖‖PLHand −PLElbow‖
(5.8)
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For each shoulder and hip, 2 DOF corresponding to NAO ’s joints are found. To find
these angles it is necessary to find the projection of a segment onto a specific plane. For
example, for the right shoulder, the RShoulderRoll angle is given as the angle between the
upper arm (PRElbow to PRShoulder) and the sagittal plane containing the right shoulder
and the right hip. Refer to Fig. 5.17(b). The RShoulderPitch angle is the one from the
projection to the axis within the plane which points forward. The plane is defined with
the help of a transformation matrix RShoulderTRFoot centred at the right shoulder instead
of the right foot. The steps to find 2 DOF joints from RShoulder are:

• Find RShoulderTRFoot

• Express PRElbow in the frame centered at PRShoulder

• Project PRElbow on X − Z (sagittal) plane

• RshoulderRoll is the angle between RShoulderPRElbow and the X − Z projection

• RShoulderP itch is the angle between the X − Z projection and the X axis

(a) Elbows and knees (b) Shoulders and hips

Figure 5.17: Extracting human angles from joint positions.

When using the marker-based motion capture system, the orientation of all joints and
segments are available. Moreover, more segments are being tracked. This makes it sim-
pler to obtain human joint angles which correspond to the robot’s. Also, more angles
are obtainable, as the ankle, wrist and head orientations can be found. However, for
consistency between the two systems, in this research the same angles were extracted
from both systems in the same way. It is very interesting for future work to extract more
angles from the marker-based system.

Note that the scaling process has been formulated for the NAO robot, but it can be
adapted to other robots which have, for example, a spine, toes, etc.
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5.2.3 Program

The imitation is performed by the combination of two programs. One extracts the desired
aspects of the human data, scaling the task space and grabbing the desired joint values.
The other one receives this information to calculate the inverse kinematics and send the
results to the robot.

5.2.3.1 Motion capture

For the Kinect sensor, the motion capture program works either online or offline. For on-
line imitation, a C++ program communicates directly with the IK program via a shared
memory segment. When the imitation is offline, the same program can be used to save the
needed data on a CSV (comma-separated values) file for each time step. This program
works in a 60Hz frequency, but note that during online imitation not all samples are used.

It was not possible to access the SRTtrack system online, so only offline data could be
used. The same CSV file as that of the Kinect is generated, but for this system, a Matlab
script is used to generate the file. This data is also acquired in 60Hz.

Online or offline, marker-based or markerless, all motion capture programs have the same
flow:

1. Receive data from sensor expressed w.r.t. an absolute frame

2. Find a transform from the absolute frame to RFoot

3. Express all joints w.r.t. the RFoot frame

4. Scale to the robot’s size according to Section 5.2.2.1

5. Extract 12 joint angles according to Section 5.2.2.2

6. Send 3 end-effector positions [3×3 = 9] and 12 angles to the robot control program
or a CSV file (21 values)

5.2.3.2 Robot control

This program controls the robot based on the data which is received from the motion
capture system. A general flow chart of the program is shown on Fig. 5.18. Each element
is explained below in some detail, as they appear on the flow chart. The IK solution is
foung numerically [21] making use of the differential model. The difference in task vector
∆X is diminished little by little adapting the joint configuration qc.
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Figure 5.18: Single support IK program flow chart.
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Initial pose

Fix robot angles in a hand-picked pose which is balanced on RFoot. NAO says ”I’m
ready” and someone must manually place him standing on his right foot. The first hu-
man data will be sent when the human makes a psi pose in single support, similar to the
robot’s, but this decision is made by the Kinect program.

Terminate program

If any keyboard key is hit, the program is properly terminated. Note that ending the
program with Ctrl+C doesn’t save some needed data correctly and leaves the robot stiff.

Get new human data

If online, new data is copied from the memory segment shared with the Kinect program.
If offline, a new line is read from a CSV file. The data received corresponds to the 21
values mentioned in section 5.2.3.1. This data is already scaled and ready to be used by
the IK.

Get current robot angles

The current robot configuration qc is got with the method getAngles. Normally, it should
be close to the pose previously sent to the robot.

Begin solving

At this point, the program starts to solve for the newest data. The solution might take
a few iterations to be found. The iteration counter is set to 0. The human data is dis-
tributed into the desired end-effector positions Xd and desired joint angles qd.

Current task vectors (DGM )

Use the DGM (previously calculated symbolically with Matlab) to obtain the current
task vectors in function of the current joint angles (Xc = f(qc) and Xc

CoM = f(qc)).
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Resize task vectors

In case the difference between current and desired task vectors is larger than their thresh-
olds (Sp = 10mm and SpCoM = 10mm are being used), the desired vectors are scaled
down. The resized goal is referred to as SpXd

j , as shown on Figure 5.19.Recall that the
validity of the pseudo-inverse is only for small task space differences. Moreover, it is
important to insure that every step in the robot’s trajectory complies with the hard con-
straints. In case a large solution were found at once, there are higher chances that some
points in the trajectory won’t comply with balance constraints, for example.

Figure 5.19: The desired end-effector positions are resized to a maximum distance Sp. Here,
the example for the left hand.

Check hard constraints

The results are only sent to the robot if all hard constraints have been fulfilled, these being
joint limits, balance and end-effector tracking. Each of these constraints is checked sep-
arately. Joint clamping keeps the result within limits, but this check is necessary during
experiments when the clamping is turned off. Balance and tracking constraints are con-
sidered fulfilled when ∆Xtracking < max Error X and ∆XCoM < max Error X CoM .
Both errors have been set to 0.2mm. Note that the goal here is SpXd, the scaled goal, so
if the final goal is too large, it won’t be reached.

Set robot angles

If all hard constraints have been satisfied, the angles calculated are sent to the robot. If
more than one iteration was needed to solve the IK, the steps are sent one at a time. The
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function of NAOqi used to send the joint values is angleInterpolationWithSpeed. This was
chosen for it is a blocking call, and the program only moves on when the goal has been
reached. With this function, the speed of motion can be chosen. The default has been
set to 10% the maximum speed.

Check for maxIterations

Several iterations might be needed for the IK to reach the final goal, even if the final
goal has been scaled down. However, since this is a numerical approach, it is not assured
that a solution will be found. In fact, after some iterations, if the hard constraints are
not reachable or compatible, the pseudo-inverse won’t come to any useful results. Thus,
a maximum number of iterations is set beforehand, so if the IK is taking too many iter-
ations to be solved, the current goal can be abandoned and new human data should be
taken. It was observed that good results are usually obtained with less than 6 iterations,
so a safe limit was set at maxIterations = 20.

Task specification

If the current configuration qc doesn’t comply with all constraints and the maximum
number of iterations hasn’t been reached, the task-based IK is calculated. First, the
DKM is calculated for the current joint values using symbolic matrices previously got
with Matlab. Then the task specification is calculated with 4 tasks: balance, end-effector
tracking, joint tracking and avoiding joint limits. Most matrices dealt with here have
more columns than rows, so the right pseudo-inverse is being used. Among the equality
tasks, balance has a higher priority than tracking, so:

J1 = JCoM (5.9a)

∆X1 =

[
0
0

]
−Xc

CoM (5.9b)

J2 = Jtrack (5.9c)

∆X2 = Xd
track −Xc

track (5.9d)

Clamping joint limits

The final result of the IK including all 4 tasks is ∆q4. Recall that this vector contains
the values for 23 DOF. If some of these DOF are not within their limits, they are fixed
to their limit values and the corresponding Jacobian columns are zeroed as explained on
Section 4.3.1.
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5.3 Results

The previously described algorithm was tested online and offline for a wide range of mo-
tions. Some results will be analysed in this section.

5.3.1 End-effector tracking

While avoiding joint limits and keeping balance are the most important tasks to assure
imitation is successful, the quality of the imitation is measured by how similar the robot’s
motion is to that of the human actor. The similarity of motion can be measured by how
closely the end-effectors and joint values are being tracked. Since we’re talking about
online imitation, the tracking has to be close not only in value but also in time.

Since the imitation performed involves static balance, the human must move quasi-
statically so the robot doesn’t gain too much momentum. In this sense, it is easier to
perform online imitation than offline, because when registering motion offline, the human
doesn’t have a feedback on how slowly the robot is moving and is not able to slow down
accordingly, which will result in very different motions between the human and the robot.

An example for a simple motion is shown in Figure 5.20. This imitation was performed
online using 10% of the robot’s maximum speed. The norm of the desired positions and
the obtained positions for each end-effector during this motion are shown on Figure 5.21.
On the left, the limb trajectories in Cartesian space are plotted for the scaled human and
the robot. The skeleton shown corresponds to the initial pose for both. Note that the
human data from the Kinect sensor is quite noisy.

When the human moves too quickly, such as the hand movements from 7s to 17s, the
robot is not able to catch up because of the limitation imposed on its speed. As previ-
ously explained, the speed was limited in order to avoid high accelerations, since this is a
kinematic approach. However, if the human is able to move slowly, the algorithm is able
to track closely in time, as can be seen for the ankle motion from 23s onwards.

Note that due to the choice of dividing the goal positions into smaller steps, the robot
is constantly moving towards the new goal and forgetting the previous. This means that
the amplitude of motion is not as large as that of the human’s, for example, the hand
motion at 15s1 wasn’t tracked because the human changed the direction before the robot
could catch up. It was observed that for online imitation, this results in higher quality
of motion with less delay, as the robot quickly adapts to new goals.

It is very common that the Kinect sensor loses a limb for some time steps, causing a
large discontinuity in the motion. Such a case is illustrated in Figure 5.22, where the

1The quick human motion at 15s corresponds to a moment when the human lost balance and had to
move quickly to recover balance.
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Figure 5.20: Four moments during single support imitation.

Figure 5.21: End-effector tracking results corresponding to the motion on Figure 5.20.

Kinect misplaced the ankle from 30 s to 33 s close to the support foot, when the actor
actually had the left ankle raised. If the motion weren’t divided into smaller steps, the
robot would follow the misplaced limb all the way and move very differently from the
human. Thus, dividing the motion also copes with some of the sensor’s limitations.

It can thus be concluded that the end-effectors were successfully tracked in time and
space given the speed limitations of a kinematic approach and the quality of the data
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Figure 5.22: End-effector tracking when the Kinect misplaces a limb.

obtained from the motion capture system.

5.3.2 Balance

For the motion of Figure 5.20, the evolution in time and space of the CoM projection on
the ground is shown on Figure 5.23. The CoM projection is estimated using the devel-
oped model and the robot configuration after each time step obtained with getAngles.

Figure 5.23: CoM projection on the floor throughout motion imitation.
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The hand-picked initial position had the projection about 25mm in front of the ankle
projection (x = 0, y = 0), but when the imitation begins, the robot successfully brings
the CoM below the ankle and keeps it in that vicinity throughout the imitation. The
error allowed for the CoM projection was of 0.2mm for each coordinate, but errors as
high as 2mm were observed. This shouldn’t challenge the robot’s balance however, since
the projection stays well within the support area.

Although the robot was able to stay balanced throughout most of the experiments, oc-
casional falls were also observed. These falls are attributed to sudden jerks, which can
occur even at 10% the maximum speed; or to mechanical limitations, such as motors
getting hot and suddenly losing stiffness. Errors due to the lack of calibration are also
a possible cause of falls. Moreover, it is important to notice that during single support
imitation, issues such as interpenetration and contact between the swing foot and the
floor weren’t addressed. Therefore, it is still necessary to insure security because in rare
occasions the robot might fall.

5.3.3 Joint space

Two of the four tasks are directly related to the joint space: joint limit avoidance and
tracking the human joints.

5.3.3.1 Joint limits

The joint limits were avoided by a combination of an optimization task and a clamping
loop (Section 4.3.1). Figure 5.24 shows how even though some human joints went beyond
the robot’s limits, the robot was able to imitate while staying within its limits.

Avoiding the joint limits was treated as a hard constraint: if the IK solution doesn’t
fit into one of the joints’ limits, the results are not sent to the robot at all. After trial
and error, the weight κlimits was set to −0.02. This value will be more deeply analysed
in the next chapter, during double support. The necessity of using both clamping and
optimization will also be investigated then.

5.3.3.2 Joint tracking

Finally, the task with the lowest priority is that of tracking the human angles in joint
space. This task is added because in case all the previous tasks are easily satisfied, it
would be nice to have the robot perform the task in a manner as close as possible to the
human. This is the only out of the four tasks which is being treated as a soft constraint.
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Figure 5.24: Human joint angles beyond robot limits.

As seen in Figure 5.24 above, at times, robot joints move quite differently from the human
ones, which is to be expected of the lowest priority task. However, whenever is possible,
the joints follow the human quite closely, as seen on Figure 5.25. This task will also be
analysed in more depth on the following chapter.

Figure 5.25: Human joint angles tracking.
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5.3.4 Motor speed

Human beings are capable of moving very fast while keeping balance and good control
of their motion. Reproducing human motions with the same quality and speed is a very
difficult task. In this work, only quasi-static motion is being imitated, which is just an
approximation. In reality, the human actors are moving slowly, but how slow is slow
enough? It is interesting to push the speed barrier to as fast as the kinematic simplifica-
tions can handle.

NAO ’s API allows the choice of what fraction of the motor’s maximum speed will be
used. In order to test the effects of increasing motor speed, a motion was recorded online
with 10% of the maximum speed and re-imitated offline with speeds from 10% to 100%.
The motion analysed consists of lowering both arms and lifting the left ankle at the same
time. The end-effector tracking for the motion in question for all speeds is shown on Fig-
ure 5.26. Three moments during the motion are shown on the right. Time zero represents
the moment the imitation program begins running. Only the 300 samples corresponding
to the motion in question are plotted.

Figure 5.26: Same motion imitated offline with different speeds. On the left, end-effector
tracking; on the right, three moments during the motion.

It was observed that in general, increasing the speed reflects in decreasing imitation time.
However that is not always the case. For example, 80% speed took 30.9s to go through
this motion (300 samples) while 100% speed took 33.0s. While the exactly same data
was used for all experiments, since the solution is numerical and depends on the feedback
from the robot, slightly different motions occur.

For all speeds, the robot jerked as it moved from sample to sample. This is mainly due
to the noisy data from the Kinect, which doesn’t provide a smooth motion. As the speed
was increased, the jerking got stronger and the robot more unstable. Even though it did
not lose fall this motion for any speed, the faster the speed, the more it wobbled on the
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right ankle, sometimes the foot even lost flat contact with the ground.

Perhaps with smoother data, the speed can be increased without generating dangerous
dynamic effects. However, for noisy data, it would be dangerous to have the robot shak-
ing at high speeds. Besides, all the shaking looks bad. Therefore, it was decided to stick
to 10% speed in further experiments.

5.3.5 Time constraint

During online imitation, the time taken to go from human motion until robot motion is
of great importance for the quality of imitation. No time constraints were imposed on
the program however, so the flow on Figure 5.18 runs until a solution is found or the
maximum number of iterations is reached, taking a different time each loop. The period
difference among time steps is mainly due to the different time required for the robot to
move and the different number of iterations needed to solve each configuration.

Since there’s no fixed frequency for the program, we’ll be analysing the average time for
each block in the program. The motion here analysed is the one on Figure 5.20. The
imitation was performed at 10% the maximum speed, online, with the Kinect sensor.

The average time taken from the reception of one new human data to the next was of
410ms (2.4Hz), with a minimum of 200ms and a maximum of 1041ms. It is clear that
the pose required from the robot greatly influences the resolution time.

But what is taking so long, the resolution of the IK or the robot motion? The chart
on Figure 5.27 shows that, in average, 90% of the imitation time is spent by the robot
moving, which takes 365.0ms in average. More specifically, this time corresponds to the
instructions sent with angleInterpolationWithSpeed, one iteration at a time. This time
can certainly be improved by increasing the robot speed, but as explained in the previous
section, that would endanger balance.

Figure 5.27: Average time slices for various parts of the program.

The Solve time given on the chart refers to the time between the moment the human data
is received until either all constraints are satisfied or the maximum number of iterations
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is reached. This takes 40.9ms in average. Most samples needed exactly 2 iterations to
be solved (only 2/91 samples took 3 iterations).

The chart on the right shows what parts within solving take the longest. Each block’s
average time is multiplied by the average number of iterations. Most of the solving time
is taken by the DKM. This corresponds to accessing the symbolic Jacobians for the 3 end-
effectors and for the CoM projection. Next, the most time is taken by the task solving
itself, which includes the computation of several matrix multiplications (including those
to compute the pseudo-inverses), and the clamping loop.

5.4 Conclusions

In this chapter, task-based inverse kinematics were used to control a humanoid robot bal-
anced on one foot using human motion online. A method of scaling the human motion
segment by segment was introduced and its efficiency in reproducing whole-body poses
verified.

The quality of motion was analysed by looking at the hard constraints: end-effector
tracking, keeping balance, avoiding joint limits; and soft-constraints: joint tracking and
imitation time. The results show that the robot successfully tracked the human per-
former’s end-effectors (hands and left foot) while keeping the projection of its center of
mass under the right foot’s ankle. The tracking is good even when the sensor misplaces
a limb for a few seconds.

It was shown that the clamping loop together with the limit avoidance optimization task
are able to keep the joints within their limits and the human joint values are tracked
whenever is possible. Is was also explained that for stability reasons, the chosen robot
velocity was of 10% its maximum speed. As for the imitation time, it was seen that about
90% of each time step is spent by the robot moving while only 10% are used to solve the
IK. The average frequency of imitation was of 2.4Hz.
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Chapter 6

Imitation including support changes

In the previous chapter it was explained how imitation in constant single support on the
right foot was performed. That implementation was very limited however, since it corre-
sponds to only a fraction of all the possible human motions. In this chapter, the human
ability of standing on either foot, two feet at the same time and transitioning between
these behaviours will be addressed. The method previously used is extended to include
double support and support on the left foot, as well as the transitions between them.
Figure 6.1 captures several moments during online imitation including support changes
for different actors.

Figure 6.1: Example of online imitation including support changes.
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6.1 Main differences from single support imitation

Up to now, the robot was continuously on right support (RS ). Now, double support (DS )
and left support (LS ) are included in the imitation.

Figure 6.2: Transitions between supports.

On the scheme above, blue arrows represent a continuation of the support from the pre-
vious time step, while black arrows represent a change in support, i.e. a transition. The
red cross represents the desired position for the projection of the CoM in relation to the
robot’s footprints. Note that it is not allowed for the robot to transition directly from
RS to LS and vice-versa.

Unlike before, the goal point for the projection of the CoM changes according to the
support. It is therefore very important to make sure the CoM is within the current
support polygon while it is moved from one goal to the other in order to ensure balance
during transition. Another difference is that now the right foot is not fixed to the floor
any longer, so the robot is able to locomote in the world frame. That calls for an absolute
frame external to the robot.

6.2 Implementation

The tools used for this experiment were the same as those in the previous chapter. Like
before, two programs were developed, one which handles the motion capture and another
which controls the robot. Several elements were added both to the robot model and to
the human motion scaling in order to manage the new motions.

6.2.1 Robot model

Now that the robot’s right foot is no longer fixed to the world frame, the modelling has
to be rethought in a way that it takes support changes into account. For instance, when
the robot is in left support, the projection of the CoM has to be taken with respect to
the left foot’s frame.
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This could be solved in several ways. For instance, calculating a transform LFootTRFoot

which transforms points expressed on the right foot frame into the left foot frame. An-
other possibility would be to add 6 DOF to the model in order to position and orient the
robot in the world frame. Both these solutions proved to be unfit though. The former
was too heavy for Matlab to calculate symbolically and the latter would over-constrain
the 23 DOF robot. Face these difficulties, a different approach was taken.

Instead of using the RFoot model and transforming points to the LFoot frame, a new
model based on the LFoot was developed. So whenever the robot is in LS, the IK can
be solved with this model, and while in RS, the model from the previous chapter can be
used. The M-DH parameters for this model and the resulting tree structure are shown
on Table 6.1 and Figure 6.3 respectively. From the torso upwards, the model is the same
as before. The masses were placed on the new kinematic chain as previously done.

During RS, the model based on the right foot (Figure 5.9, Table 5.1) will be used, while
the left foot model just described will be used during LS. As for DS, the right foot model
will be used together with constraints that assure that the left foot is flat on the floor as
will be explained shortly.
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Figure 6.3: NAO ’s kinematic chain based on the left foot, modelled with the M-DH parame-
ters on Table 6.1.
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6.2.2 Human motion

For single support imitation, the captured skeleton was always translated to the right foot
and then scaled down to the robot’s size (Section 5.2.2.1). Here, the scaling including
support changes is significantly more complicated. Now there’s the need for an absolute
frame which is not attached to the robot. Also, there’s the need to detect the current
support type and transform the frames accordingly. Finally, special care has to be given
to the DS phase so the scaled motion keeps both feet on the floor. A summary of all
frames of reference used is shown on Figure 6.4.

All these transformations occur in the program responsible for the motion capture. As
before, for the Kinect sensor, the program can run either online or offline. For the ART-
track system, the data is captured offline, transformed with Matlab and sent to the IK
program via a CSV file.

Figure 6.4: Frames of reference for imitation including support changes.

6.2.2.1 Human absolute frame

Each motion capture system has its own frame of reference. For consistency among dif-
ferent systems, the first step is to define our own absolute frame of reference. When only
RS was imitated, the absolute frame coincided with RFoot. Now, the absolute frame is
placed on the point in between the two feet. As before, the calibration pose (psi pose,
with both arms bent about 90◦) is used to help define the absolute frame: the frame’s
origin is placed between the two feet with its Y -axis pointing towards the left foot, and
Z -axis parallel to the legs. A transform from the motion capture system’s absolute frame
to this frame is calculated once in the beginning and used at each time step. Therefore,
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unlike in the previous chapter, the human can move around, but the sensor still cannot
be moved during imitation.

6.2.2.2 Support detection

Before scaling the data to the robot’s size, it is necessary to detect in which kind of sup-
port the human is. A foot is considered to be support if its z coordinate is lower than a
given threshold. The threshold chosen is quite high (200mm) to avoid false positives due
to jittering. Even so, depending on lighting conditions, the quality of the Kinect data
can be so bad that false positives occur. Such a high threshold means that the human
actor must lift the leg very high in order to cause a support change in the robot.

6.2.2.3 Scaling in the absolute frame

The data is scaled to the robot’s size with respect to an absolute frame placed between
the robot’s feet. It will be with respect to this absolute frame that the robot will loco-
mote in space. This data will be later transformed to a relative frame (RFoot or LFoot)
only for the IK resolution, according to the current support. When scaling the data,
important decisions must be taken regarding how to choose where to place the feet.

Continuous Double Support

The imitation always starts after calibration with the psi pose, which is in DS. From
there, the robot remains in DS for a while until the actor decides to lift a leg. Due to jit-
tering, the human data received may vary a lot from one time step to the next. However,
in double support it is specially not desirable that the robot’s legs keep on shaking as
it jeopardizes stability. Thus, it was decided that when the robot is continuously in DS,
both feet’s positions are kept the same as in the previous time step. That is, the scaling
forces them to stay in place, ignoring the received data for the feet. This comes with one
great limitation though: if the human slides the feet on the floor, the robot won’t follow.

Since we’re tracking ankle frames, these frames will be fixed at FootHeight (refer to Figure
5.8). Fixing both ankles means that the legs are forming a closed loop. It would be very
complicated to scale the knees and hips in order to fit the robot’s geometry while follow-
ing the human directions as previously done. For offline motion, optimization techniques
could be used, but during online imitation, this might take precious time for something
that isn’t very important (remember that we’re only interested in the end-effectors posi-
tions and other joints are only scaled together in order to maintain proportions close to
the human).

To cope with the closed loop, it was decided to simplify the legs during DS. Instead of
scaling each body segment separately, only for the legs, the vector from the mid-ankles
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to the mid-hips was scaled at once. From the mid-hips onwards however, the previous
method was maintained (Section 5.2.2.1). Figure 6.5 shows a human pose and its corre-
sponding scaling. Note that after scaling, no knee joints can be seen, as they were not
calculated.

Figure 6.5: Scaling in double support.

Transition into single support and its continuation

When either foot is lifted beyond the threshold height, single support begins. The scal-
ing stops forcing both feet on the floor and instead fixes only the one which remains as
support. That is, the support foot and ankle keep their positions from the previous time
step. This works both for a continuous single support or for a DS-SS transition. From
the ankle upwards, the rest of the body is scaled as in the previous chapter, starting from
either the right ankle or the left ankle, as seen on Figure 6.6.

(a) Right support (b) Left support

Figure 6.6: Scaling in single support.

There’s a large discontinuity when transitioning from DS to SS, because the foot which
was forced to be on the ground is suddenly lifted beyond the threshold. This will be dealt
with on the robot control side.
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Transition into Double Support

Finally, when transitioning back into DS, the swing foot should be fixed to the floor again.
Once more, there will be a discontinuity which will be dealt with later. The choice to be
made here is where to place the foot - what will be the position on the floor for the foot
to track?

Human beings make great use of their dynamics when placing feet on the floor. When
walking, for example, we ”fall” onto double support because we know that the swing foot
will be placed in time to absorb the fall. Since we’re dealing with static imitation, this
kind of dynamic movement is not taken into account.

The range of positions on the floor where the robot can place the swing foot while in
static balance is quite narrow since the CoM projection must remain in the support foot.
Thus, the human foot position received has to be scaled down to the robot’s reach while
making sure that the feet are far enough from each other, because NAO ’s feet are pro-
portionally larger than the human’s.

Several approaches were experimented with. Fixing the foot onto the projection of its
previous SS pose, for example, often results in poses which cannot be reached by the
robot (the IK doesn’t converge to a solution). An approach which worked reasonably
well was to scale the human foot position to fit within an area where it is known that
NAO can reach with a flat foot in static balance. This area was found by trial and error
by making the robot trace a rectangle on the floor with flat feet.

Different rectangles were experimented with until one was found where the robot can
comfortably reach all edges. The chosen rectangle is shown on Figure 6.7 with respect
to RFoot (xmin = −100mm,xmax = 100mm, ymin = 100mm, ymax = 150mm). The rect-
angle corresponds to the allowed positions for the swing foot origin, which is under the
ankle, so the rest of the foot can fall outside this area. Note that the foot orientation
w.r.t. the vertical axis is not being controlled, the reason will be explained shortly. Since
this area was chosen by trial and error, a more rigorous kinematic analysis of the foot
landing area should be done in the future.

The acquired human foot position is first scaled down to the robot’s size. If it is within
the rectangle, the foot is fixed in that position. If it is outside, it is scaled to the closest
edge.

6.2.2.4 Transforming to the support foot frame

In the previous section, the data was scaled with respect to an absolute frame. That
will be the space in which the robot will locomote. However, since our kinematic models
assume one of the feet to be fixed to the ground, it is necessary to translate the scaled
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Figure 6.7: Mapping area which can be reached by the ankle of swing foot while flat. Note
that the rest of the foot might fall outside the area. Here, depicting the case where
RFoot is the support and LFoot is the swing foot.

skeleton to the foot frame.

According to the support, the robot control program will use a different model to solve
the IK. When in RS, the right foot model will be used, and when in LS, the left foot
model. When in DS, the right foot model will be used and the IK will include extra
constraints to guarantee that the left foot is flat on the ground.

We need to find a transform from the absolute frame to the foot frame. However, recalling
that we’re only working with joint positions and ignoring orientations, we don’t have a
foot frame. So this frame will have to be constructed making use of other joint positions.
For either foot, the 3 axes are chosen as follows:

• Origin: The origin is taken either as the right foot or the left foot.

• Z axis: The same as it is in the absolute frame [0,0,1].

• Y’ axis: First it is taken as the direction from PRHip to PLHip. It will be modified
soon.

• X axis: The cross product Y × Z. It points to the front of the body and is on the
ground plane.

• Y axis: Finally, the Y axis is taken as the cross product Z × X. This fixes the
frame’s orthogonality and places the Y axis on the floor plane.

After translating the data, the result is a scaled human like those previously shown on
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Figure 6.4. From these joints, the 3 end-effector positions are sent to the robot control
program, as well as the human joint angles. The end-effectors for each model are:

• RFoot model: LHand, RHand, LAnkle

• LFoot model: LHand, RHand, RAnkle

In the end, the data that is sent to the robot control program includes the Cartesian
position for 3 end-effectors (3 × 3 = 9), 12 joint angles, the current support (RS, LS or
DS ), and the support of the previous time step. The transformation matrix from the
absolute frame to the current model is also sent, not to be used in the resolution of the
IK, but so that the obtained results can be transformed back to the absolute frame later.

6.2.3 Robot Control

A program in C++ is responsible for receiving data from the motion capture system,
computing the IK and sending the results to the robot. This program is considerably
more complicated than that of the continuous single support, because different robot
models are used and transitions have to receive special care. A general flow of the pro-
gram is shown in Figure 6.8.

Now the initial configuration is in DS with the arms positioned similarly to the psi pose
and all the leg joints equal zero. As before, the data can come either from the shared
memory segment or from a CSV file. This time, 35 values are being passed (9 coordinates,
12 joint angles, current support, previous support, 12 elements of the transformation ma-
trix).

This time, the IK is solved slightly differently according to the support. Each continuous
support (current support the same as the previous one) has a different set of goals and
constraints. For support transitions, the solution is divided in 2 steps: placing CoM and
placing swing foot.
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Figure 6.8: Flow chart of the robot control program including support changes.
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6.2.3.1 Continuous support

The 3 types of continuous support are: RS to RS, DS to DS and LS to LS. A summary
of their tracked coordinates is found on Figure 6.9.

Figure 6.9: Tracked coordinates for continuous support.

Each continuous single support (RS to RS and LS to LS ) uses the model referent to its
support foot. Their desired end-effector positions Xd

track contain 9 values: the 3 Cartesian
coordinates for each hand and for the swing ankle. And the desired CoM projection is
Xd
balance = [0, 0] for both cases, which corresponds to the x, y coordinates of the support

foot for the current model.

While the single supports are similar to what was done in the previous chapter, the DS
to DS motion requires some modifications. To begin with, the desired CoM projection
no longer falls onto the origin. Now it falls between the feet. Considering that RFoot is
the origin, Xd

balance ends up being half the position of LFoot.

In DS, it is also important to keep the swing foot (LFoot) flat on the same plane as the
support foot (RFoot). As before, the 3 Cartesian coordinates for the ankle are tracked
(note that the z coordinate was fixed to FootHeight by the scaling). However, more
constraints are needed in order to keep the foot flat. To keep the foot fixed on a same
position on the floor, it is necessary to track 6 DOF (3 translations and 3 rotations).
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Several attempts were made to fix 6 DOF of the foot, such as tracking 2 points among
LFoot, LAnkle and a newly defined LToe, or tracking a point and its orientation. How-
ever, the IK wasn’t able to converge for these constraints. Whenever the balance was
satisfied, the foot couldn’t be fixed. This is believed to be due to the robot’s kinematic
structure. The pelvis joint (R/L)HipY awPitch is responsible for both feet’s yaw, which
are coupled to each other. Moreover, this joint greatly influences the position of the torso,
which is the heaviest mass in the body, thus, HipYawPitch is very important for balance.
When asking to place the CoM projection onto a specific point and at the same time
fix the feet with a certain yaw angle between them, this DOF often cannot handle both
tasks and the IK doesn’t converge.

This poses a big problem to the imitation using this specific robotic platform. Either
the balance constraint must be loosened in order to give more room for the feet yaw, or
the foot constraints must be loosened. The balance constraint could be loosened to cover
the whole support area instead of a specific point, but ultimately we’d still have 1 joint
controlling 2 important tasks.

Thus, it was decided to loosen the constraints on the foot placement. For balance, it is
very important that the foot remains flat on the floor, and that can be assured indepen-
dently of the foot orientation about the vertical axis (yaw). If the foot rotation about
the vertical axis is allowed, there are only 5 constraints left to keep the foot flat, leaving
HipYawPitch to do mainly the torso positioning. This allows the feet to slide on the
floor rotating about the vertical axis, which can be dangerous in case of high friction.
However, most of the time, allowing yaw only influences the visual quality of the motion
and does not endanger balance. Given the kinematic limitations of the NAO robot, this
was considered an acceptable compromise.

After several attempts on combinations of 5 DOF to track, it was observed that tracking
3 ankle coordinates and setting the z coordinate of LFoot and of LToe to zero provided
conversion. Tracking orientations about the horizontal axes, for example, rarely con-
verged. It would be interesting to investigate the reasons for that in a future work. Note
that LToe can be found from the DGM given qc, but not from the Kinect. However,
we’re only interested in setting its vertical coordinate to zero, so we don’t need to obtain
it from the human.

It’s also worth noting that geometrically, tracking only 3 DOF for the ankle and the
z coordinate of the foot should be enough to constrain 5 DOF since the fixed distance
between these points acts as an extra constraint. However, due to precision errors, this
was generating little shaking of RAnklePitch which made the whole robot very unstable.
Tracking LToe’s vertical position decreased shaking on that joint, but still allows some
shaking of the RAnkleRoll joint, which at times increases the robot’s instability.
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Figure 6.10: Tracked coordinates so as to keep LFoot flat on the ground during DS.

6.2.3.2 Solving transitions

For single support, if the goal Xd was further than Sp, only SpXd would be covered, Xd

was thrown away and a new goal was asked from the motion capture system. Now, the
same is done for continuous support phases but not during transition.

For transitions, it is of utmost importance that the goal is reached, as we will see below.
Thus, even after an intermediate goal SpXd is completed, the final goal Xd must be ful-
filled before new data is acquired. While the final goal hasn’t been reached, the program
is said to still be ”solving” for the previous data, so no new data is acquired until the
final goal has been reached.

6.2.3.3 Transition from DS to SS

When taking off a foot from the ground, the projection of the CoM must be moved to
the support foot. Also, the swing foot must take off perfectly parallel to the floor, so it
doesn’t ”kick” the ground pushing the whole body upwards. In order to avoid a loss of
balance, these transitions have to be performed smoothly. While transitioning, it is of
utmost importance that the feet are placed as desired. The locus of attention is set to
the feet, so the hands’ constraints were released.

Figure 6.11 shows the tasks for the DS to RS transition. The first step is to move the
CoM projection from the middle of the feet to RFoot. The effector vector Xd

track remains
the same as for the continuous DS on Figure 6.9. To increase stability during support
change, the CoM goal Xd

balance is set not to the projection of the ankle [0, 0], but to a
point closer to the center of the foot with an added offset on the X axis [CoMoffset, 0].
The offset was set to 15mm. Once the continuous support RS to RS begins, the CoM
goal goes back to the ankle projection in order to minimize the torque needed from the
ankle motors.

The second step of the transition is to detach LFoot from the ground while keeping it
parallel. This is done by incrementing the z coordinates of LAnkle, LFoot and LToe little
by little until a predetermined LiftHeight is reached (using LiftHeight = 30mm).
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Figure 6.11: Tracked coordinates during support transition, DS to RS example.

The DS to LS transition occurs in a similar manner. Using RFoot model, the CoM is
placed onto LFoot. Then the LFoot model is used with constraints to keep RFoot parallel
to the ground while it is lifted to LiftHeight.

6.2.3.4 Transition from SS to DS

The steps of SS to DS transitions go on a reverse order: first, the swing foot must be
lowered to the ground while parallel, and only after that the CoM is placed between the
feet. A scheme is seen on Figure 6.12.

Even after mapping the flat foot area and not tracking the hands, there are times when
the IK cannot find a solution to place the foot on the desired position. That’s because
the conversion depends not only on the goal but also on the starting point. Thus, as a
last resort to try to ensure convergence, in case tracking the 5 DOF is not possible, only
2 DOF are tracked, namely zLFoot, zLToe. This is dangerous, as the foot could be placed
anywhere, including on top of the other foot. However, it is one more attempt to insure
conversion which works most of the time, as will be shown on the results. If not even
this is possible, the imitation fails.

For LS to DS, the process is similar, but the RFoot is lowered using the LFoot model,
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Figure 6.12: Tracked coordinates during support transition, RS to DS example.

and the CoM is placed the exact same way, with the RFoot model.

6.3 Results

6.3.1 End-effector tracking

Figure 6.13 shows the imitation online for a movement that starts with both feet on the
floor, lifts the left foot, then places the foot again on the floor on another position. In
other words, a step forward. The tracking of end-effectors with respect to the absolute
frame is shown on Figure 6.14.

For the DS to RS transition, the robot takes a while to finally lift the foot from the floor,
since it has to carefully move the CoM and lift the foot parallel to the ground. After
that, it is seen that the robot catches up with the human’s movement in RS.

Note that even though the hand’s constraints were released, the hands didn’t move much
away from the previous position. That’s thanks to the pseudo-inverse, which finds the
solution which requires the minimum joint movement possible. During other experiments
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Figure 6.13: Moments during support transition, here showing DS -RS -DS.

Figure 6.14: End-effector tracking including support changes: DS-RS-DS.

however, it was observed that the hands might move away during transition. They quickly
catch up with the new goal after transition though.

During the RS to DS transition, it can be seen that the foot wasn’t initially placed on its
final goal. In fact, what happened was that the IK couldn’t be solved with the 5 DOF
constraint, and instead was solved while just keeping the left foot parallel to the ground,
which was enough to insure balance. Once the foot was already on the ground, during
the following time steps in DS, the foot was correctly slid to the position it should be
on the ground. This position can for sure be reached sliding the feet since the rectangle
area was previously delimited. The detour and correction described in this paragraph
occurred between 35s and 40s. The foot placement seems to happen as often with 2 DOF
as with 5 DOF, but more rigorous experiments must be conducted to verify this.
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6.3.2 Balance

For the previous movement, the projection of the CoM on the floor and the position
of the support feet are plotted on Figure 6.15. The position of the feet on the floor is
taken from the DGM used on the joint values returned by the robot. However, this
model doesn’t take slipping into account, and due to the constant yaw rotation of the
feet, both feet were slipping during the motion. Therefore, the results are illustrative of
how the IK works rather than the actual position of the robot in space. For an accu-
rate reading of the robot’s position in space, sensors external to the robot should be used.

Figure 6.15: CoM projection with foot placement.

Up to 20s, the robot was in continuous DS. Note that even though the feet are supposed
to be fixed, LFoot moves. In reality both feet were sliding with respect to the absolute
frame, but since our model is based on RFoot, only their relative positions are taken and
it seems like LFoot was the only one sliding.

The moment the transition to RS starts, the CoM projection begins moving from the
point in-between the feet towards RFoot. LFoot actually only separates from the floor
once the CoM projection has reached RFoot. Throughout RS, the CoM projection re-
mains in the vicinity of RFoot.

As explained in the previous section, during this movement, the IK wasn’t able to place
LFoot directly on the desired position, so it was placed wherever it was the most conve-
nient for the IK while staying parallel to the ground. The movement of LFoot can be
clearly seen here. It landed onto a random position and when the continuous DS phase
began it slid to the originally intended position. Note that the projection of the CoM
remains between both feet even during the sliding.
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6.3.3 Joint constraints

In the previous chapter, the joint limit avoidance and human joint tracking were validated
(Section 5.3.3). In this chapter, the tuning of the minimization tasks’ weights and the
need for the clamping loop will be explained in more detail.

We saw that for κlimits = −0.1 and κlimits = −0.02, used together with a clamping loop,
the imitation has a good convergence rate and results in movements close to the human’s
whenever it is possible. Now, a smooth motion captured with the marker-based system
was imitated offline in 10 experiments varying the joint-related parameters. The move-
ment consists of waving both hands bending the elbows similarly to the psi pose, always
in double support (good motion example shown on Figure 6.16, top). The results are
summarized on Table 6.2.

Table 6.2: Offline experiments varying the joint constraints for the same motion.

Exp. κjoints κlimits Clamping Converges? Conversion Similar
fail to human?

1 -0.02 -0.1 On Almost always × Yes
2 0 -0.1 On Sometimes Balance Yes

and tracking
3 -0.1 -0.1 On Sometimes Balance Yes

and tracking
4 -0.5 -0.1 On Rarely Balance ×

and tracking
5 -0.1 -0.02 On Never Balance ×

and tracking
6 -0.02 0 On Sometimes Balance Somewhat

and tracking
7 0 0 On Almost always × No
8 -0.02 -0.1 Off Sometimes Limits Yes
9 -0.1 -0.1 Off Rarely Limits ×
10 -0.02 0 Off Never Limits ×

Whenever the clamping loop is turned off (experiments 8,9,10), the convergence begins
to fail when it comes to the constraint responsible for keeping the joint values within
their limits. This proves that just the minimization task using κlimits is not enough to
keep the joints within their limits. Notably, on the last experiment, when both methods
of joint avoidance are turned off, no conversion is possible since there’s always a joint
outside limits.

On the other hand, when the clamping loop is used without the minimization, some joints
were clamped to their limits, most notably (R/L)ElbowYaw, resulting in a motion that
looks quite different from the human’s. It can be seen on Figure 6.16(middle) that the
hands were turned backwards for experiment 6. This reinforces the idea of the clamping
loop as a last resort and not a main joint avoidance strategy. Ideally, joints are clamped
to their limits only when there’s no alternative. To this end, the minimization task helps
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Figure 6.16: Waving motion results for different joint constraints.

the loop not to be overused.

To see the influence of κjoints, it is better to set κlimits = 0, so the limit avoidance mini-
mization didn’t influence the joint values. For example, let’s compare experiments 6 and
7. For the motion studied, the main human angles being tracked are the ElbowRolls. On
experiment 6, the robot’s elbows bent similarly to the human’s, although the clamped
ElbowYaws made the hand orientation look unnatural. On experiment 7 however (see
Figure 6.16, bottom), the absence of the joint tracking minimization made the robot
”wave” with the arms completely stretched, which was very different from the human’s.

The influence of κjoints for experiments including κlimits is not so clear for this motion.
For example, experiment 2 presented a motion similar to the performer’s even though
the joint tracking was off. That’s because the limit avoidance minimization was keeping
the elbows far from their limits and bent.

It was also understood that high weights disturb the equality tasks (besides experiment
4, non-listed experiments showed that weights of -0.5 and -1 hardly converge). Also, the
relation between the weights must be κlimits > κjoints: experiments 3, 5 and 9, which
had larger or equal κjoints proved that tracking the human joints too much disrupts other
tasks. This is expected, since the limits avoidance task is a higher priority task and the
human tracking is the task with the lowest importance.
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6.3.4 Time constraint

For imitation with supports, the blocks which were the same as before took similar aver-
age time as shown in Section 5.3.5. In this chapter, it is interesting to notice the different
times to solve each kind of support for several motions by several actors.

Continuous supports took an average of about 0.7s to be solved, including times when
no solution was found and 20 iterations were calculated, which can take more than 3s.

The transitions however took much longer. Since their goal is not being resized, the
final goal is pursued no matter how far it is. Plus, the solution is divided in 2 phases.
The observed times are shown on Table 6.3, all times given are in seconds. At least 4
experiments for each transition were performed.

Table 6.3: Time taken to perform support transitions.

Support Fastest Slowest Average

RS to DS 5.1700 12.5670 8.2080
LS to DS 4.5090 7.6510 6.6444
DS to RS 2.8100 5.0170 3.9759
DS to LS 3.0480 7.3690 5.3636

In general, transitions into DS took longer than transitions to SS. This is expected, as
it is more difficult to find a good position to place the foot on the floor than it is to lift
it. The transitions are clearly the most difficult moments during imitation, and ways of
obtaining faster transitions are necessary.
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6.4 Conclusions

In this chapter, task-based inverse kinematics were extended to imitate human motion
with support changes. This allowed for the human and robot to lift and land feet and
locomote in space. The human motion was scaled taking into account support changes
and the inverse kinematics had different constraints and different robot models were used
according to the support.

Only static balance was considered, so the motions being imitated have to be slow. In
particular, the support transition times can take more than 10s for the robot while it
only takes a fraction of a second for a human. It was shown that the end-effectors are
properly tracked with respect to the world frame and that the center of mass projection
moves properly according to the support. It was also shown that the joint limit clamping
loop is necessary and that the joint tracking minimization indeed improves the quality of
imitation.

The implementation was tested with several actors, including people who hadn’t seen
the system being used before. For all experiments, the results were satisfactory, which
showed that the method implemented is intuitive and works well.

There are still several limitations, besides those inherent to a kinematic approach, to be
overcome. The most limiting factor for the support changes was the particular kinematic
arrangement of the NAO robot’s legs, which makes it difficult to freely place feet on the
floor while maintaining static balance.
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Chapter 7

Conclusions

7.1 Report conclusions

Humanoid robots are redundant open serial chains not fixed to their environment with
a few dozen DOF. In order to cope with this complexity, the approach of imitation uses
captured human motion as the basis for motion generation. This approach takes much
of the burden of motion prediction away from the robot.

Due to the kinematic and dynamic differences between human beings and humanoid
robots, motion transfer is not a straightforward matter. Besides taking into account the
physical limitations of the robot, issues such as kinematic singularities, self-collision and
balance must be addressed. Moreover, for real-time imitation, time constraints must be
enforced.

In this research, whole-body kinematic imitation of human motion by the humanoid robot
NAO using task specification inverse kinematics was implemented with four tasks: track-
ing end-effectors, keeping static balance, avoiding joint limits and tracking human joint
values. Mainly a markerless motion capture systems was used online, and a marker-based
system with better accuracy was used for some offline experiments.

A method to scale the human motion to the robot’s dimensions one body segment at a
time was introduced. The scaled end-effector positions in Cartesian space were tracked
while keeping static balance for single support on either foot, double support and tran-
sition between supports. The joint limits were avoided by a combination of a clamping
loop and a task which minimizes the distance from the average joint value. The joint
values were kept as close as possible to the performer’s whenever that didn’t affect the
higher priority tasks to imitate the manner as well as possible.

A graphical user interface which can be easily used online for the Kinect sensor and the
NAO robot was developed. Experiments with several performers showed satisfactory re-
sults for the imitation of a wide variety of slow movements. Compared to other methods
in the literature, the present approach better preserves the nuances of human motion
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during whole-body online teleoperation while working with an uncluttered motion cap-
ture system.

7.2 Perspectives

The developed method is a step towards more accurate and robust online teleoperation of
humanoid robots using human motion. There are several paths which follow-up research
could take. Throughout the report some recommendations for future research can be
seen. Some other suggestions follow:

• Currently the head is not being tracked either as an end-effector or through direct
kinematics. Since it is heavy, it was left free to move as it might aid the balance
task. It would be interesting however to add head tracking as well, preferably as
a minimization task or even directly sending the human angles and removing the
head joints from the inverse kinematics.

• Applying the current algorithm to a robot with more DOF such as Romeo or HRP-
2 could provide further validations and verify whether the kinematic limitations of
the NAO robot were really the main constraints to a better support change.

• Tracking the ZMP, rather than the projection of the CoM could extend the method
to fast dynamic motions. This would require a program running in parallel to the
IK so the acceleration of the robot can be better estimated even during blocking
calls.

• The balance task could be extended to an inequality task to place the CoM pro-
jection anywhere in the support polygon, loosening balance constraints.

• A smoother way of sending results to the robot would greatly improve the quality
of motion. A delay of a few samples could be introduced and these samples in-
terpolated. It would also be nice to have better control over the velocity at each
time-step, unlike the current functions in the robot’s API, which slow down to a
halt at each instruction sent, making the robot jerk.

• The time constraint could be reinforced in the same way as the number of iterations
is being limited. That is, if the solution is taking more than the allowed period, the
current goal can be abandoned and new data from the human obtained or a new
starting point for the IK can be chosen. This would allow for the program to run
in a fixed frequency.
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Appendix A

Graphical interface

A graphical user interface (GUI ) was made in Qt in order to aid in the development and
analysis, as well as to make the program easily accessible to other users. The interface is
seen on Figure A.1.

Figure A.1: Imitation dashboard GUI.

This GUI allows the user to run both the Kinect and the robot control programs. The
Kinect program can either be used to record a motion to be used later offline or online

99



Appendix A. Graphical interface

at the same time as the IK program.

Several parameters can be set for the IK program. It can be used online or offline, in the
latter case after making sure the needed CSV file is in the right folder. This file may have
come from any type of motion capture system, as long as it is in the desired format. The
initial pose can be chosen between the psi pose and the zero pose - normally the psi pose
should be used, but in case the recorded motion starts differently, the zero pose might
be a closer start. The clamping loop can be turned off and the weights for minimization
tasks can be chosen.

The option to fix legs during DS is there in case the user doesn’t want the robot’s legs
to be rotating during DS. Instead, if DK is chosen, the legs are fixed and the arms are
controlled directly with the human joint angles.

The map flat feet area program makes the robot trace the rectangle explained on Sec-
tion 6.2.2.3. From the GUI, it is also possible to directly start related software, such as
Webots, Choreographe, NAOqi simulator and CMake. The Compiling menu gives direct
access to the place where each of the programs can be compiled and the Result menu to
the folders where results are saved.
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